Activity 4 Deliverable: Synthesis and evaluation of the collected data

Title: Report for the waste management in Papua New Guinea

Prepared by: Romeela Mohee, Hema Rughoonundun, Chetan Peryagh

Port Luis, July 2009
TABLE OF CONTENTS

A. WASTE MANAGEMENT SECTOR IN MAURITIUS ... 1

1. Introduction ... 1
 1.2 Economic development of Mauritius .. 4
 1.3 Waste Management System of Mauritius ... 6

2. Historical Review of Solid Waste Management in Mauritius ... 7

3. Institutional and Legal Aspects ... 14
 3.1 Institutional framework ... 14
 3.1.1 Ministry of Environment and NDU ... 15
 3.1.2 Ministry of Local Government, Rodrigues and Outer Islands 15
 3.1.3 Local Authorities ... 16
 3.2 Legal and regulatory framework ... 19
 3.3 Enforced Regional and International Conventions and Protocols for Solid Waste ... 21

4. Current Solid Waste Management ... 22
 4.1 Management System ... 22
 4.1.1 Waste generation .. 22
 4.1.2 Waste Handling and Storage ... 26
 4.1.3 Collecting Systems ... 27
 4.1.4 Transfer Stations ... 29
 4.1.5 Landfill .. 30
 4.2 Recycling Plants ... 36
 4.3 Composting .. 40

5. Solid Waste Management in future ... 44
 5.1 Composting Plant .. 44
 5.2 Waste-to-Energy Plant .. 45

6. Conclusion .. 45

B. EDUCATIONAL CAPACITY ... 47

1. Introduction ... 47

2. Faculties and Centres .. 48
 2.1 Faculties .. 48
 2.2 Centres .. 51

3. Library ... 55

4. Quality Assurance ... 56

5. Chemical & Environmental Engineering Department .. 57
 5.1 Overview of Department ... 57
 5.2 Laboratory facilities at the Department .. 58
 5.3 Modes of teaching ... 59

References... 60

ANNEX I: Brief on composting projects .. 63

ANNEX II: Principal Officers of the University ... 70

ANNEX III: Strategic Plan of the University of Mauritius, 2006 - 2015 71

ANNEX IV: Collaboration with other Institutions ... 80
A. WASTE MANAGEMENT SECTOR IN MAURITIUS

1. Introduction

1.1 Geography and History of Mauritius

Mauritius is an island of volcanic origin and is located in the south west zone of the Indian Ocean (20° 17’ S and 57° 33’ E). The island is about 2,000 kilometres off the east coast of Africa and about 855 kilometres east of Madagascar. It lies at about 300 kilometres north of the Tropic of Capricorn.

![Figure 1.1: Mauritius in the World (Source: MauritiusDelight.com)](image)

The length of the coastline of Mauritius is 177 kilometres and the island is almost completely surrounded by coral reef. This small island is just 67 kilometres long by 46 kilometres wide, covering an area of 1860 square kilometres. The Republic of Mauritius includes Agalega Islands, Cargados Carajos Shoals and Rodrigues. Mauritius forms part of the Mascarene Archipelago, which include Reunion and Rodrigues islands as shown in Figure 1.1.

The topography of the island rises from the coast to a central plateau, surrounded by several small mountain ranges. The highest point on the island can be found at Piton de la Petite Rivière Noire (828 metres) in the south-west.
Mauritius, originally named as “Dina Harobi”, was first discovered by Arab sailors in the ninth century. After a brief visit of the Arab sailors who were not attracted to the island, the Portuguese adventurers discovered Mauritius in the year 1507 and stayed up to the year 1513. Mauritius was named “Ilha Do Cirne” (Island of Swan) due to the presence of the Dodo, a flightless bird, now extinct. The captain of the expedition Domingo Fernandes Pereira was the first European to land on the island. It was another Portuguese sailor, Don Pedro Mascarenhas, who gave the name “Mascarenes” to the group of islands now known as Mauritius, Rodrigues and Reunion. However, the isolated island was of no interest to them. Hence, there was no permanent Portuguese colony on the island.
In 1598, a Dutch expedition was sailing towards the Indian subcontinent. After passing through a storm, part of the fleet reached a bay on the south west of the island. The island was then named “Mauritius” after the Stadholder Prins Maurits of Holland. It was from Mauritius that the famous Dutch navigator Tasman set out to discover the western part of Australia. However, it was not until 1638 that there was a first attempt of Dutch settlement that lasted for twenty years. Several attempts were subsequently made, but the settlements never developed enough due to continuous hardships like cyclones, pest infestations, cattle illnesses and droughts and the Dutch finally left Mauritius in 1710. They have marked the island for the introduction of sugarcane, domestic animals and deer, providing names for the country and for many regions over the whole island, decimating the Dodo and giant tortoise for food as well as exploiting large part of the Ebony forest.

In 1715, the French Guillaume Dufresne D'Arseł landed, took possession and named the island as “Isle de France”. The development of the island started in 1735 with the arrival of the French Governor Mahé de Labourdonnaiss. He established Port Louis (named after King Louis XV of France) as a naval base and a ship-building centre. Under his governorship, numerous buildings were built, a number of which are still standing today; sugarcane cultivation flourished with the help of slaves brought from Africa and Madagascar; and roads from Port Louis were linked to other parts of the island. The island was under the administration of the French East India Company which maintained its presence until 1767. During the Napoleonic wars, the Isle de France had become a strategic base from which French corsairs organised successful raids on British commercial ships. The raids continued until 1810 when a strong British expedition was sent to capture the island. The British rapidly overpowered the French after a fierce battle.

By the Treaty of Paris in 1814, the “Isle de France” which regained its former name “Mauritius” was ceded definitely to Great Britain. In the act of capitulation of French, the British guaranteed that they would respect the language, the customs, the laws and the traditions of the inhabitants. The British administration, which began with Robert Farquhar as governor, was followed by rapid social and economic changes. One of the most important events was the abolition of slavery in 1835. The abolition of slavery had important repercussions on the socio-economic and demographic fields. The planters turned to India, from where they brought a large number of indentured labourers to work in
the sugar cane fields. The Indian immigrants (mainly Hindus, Muslims and Tamils) were later joined by a small number of Chinese traders. It can be said that Mauritius, like Ile de France, was a success story under the rule of different British Governors. Mauritius obtained its independence from Britain on the 12th March 1968 and became a member of the Commonwealth of Nations. In 12th March 1992, Mauritius was declared a republic.

Today, Mauritius is still influenced by the French and British. English has become the official language of the country while French language is one of the most spoken languages. Creole, the local language, is a dialect of the French language. The Code Napoleon forms an important part of the country’s legal system but with strong overlap of English Law modified by local enactments. Over the years, a hybrid system of law has been derived from both the French and English sources. Commercial Law, Company Law, Criminal procedure and the Law of evidence are almost exclusively English, while the Code Civil, the Code de Procédure Civile and the Code de Commerce follow French Laws with some changes brought over time to suit local conditions. Mauritius has also inherited a Westminster type of Government, a Constitution, a Civil Service and a British type of education system.

In 2008, the Republic of Mauritius had a population of 1,272,040 (49.4% male and 50.6% female), a population density of 624 per square kilometre which is one of the world’s highest densely populated country, and an average annual population growth of 0.6% (CSO, 2009). The average inflation rate was 8.8% and the GDP was US $7.99 billion for year 2008 (US Department of State, 2009).

Mauritius has strong and friendly relations with the West as well as with India and the countries of southern and eastern Africa. It is a member of the African Union (AU), World Trade Organization (WTO), La Francophonie, the Southern Africa Development Community (SADC), the Indian Ocean Commission (IOC), Community of Eastern and South African States (COMESA), and the Indian Ocean Rim Association.

1.2 Economic development of Mauritius

In 12 March 1968, Mauritius obtained its political independence from Great Britain. However, the country still had to forge its economy. Before the independence, the most important economic resource was the sugar-cane fields introduced by the Dutch and successfully cultivated by the French
colonists. Thus, Mauritius was made to produce chiefly raw sugar for Great Britain. In this manner, it became, like many other British colonies in the Caribbean area, a monocrop economy. Its raw sugar was exported to Great Britain which is the case up to year 2009, where the Savannah Sugar Factory has expanded to a produce refined sugar.

Around the years of independence, Mauritius relied on sugar for more than 95% of its total export earnings. In 1967, sugar accounted for about a third of the gross national product at factor cost, for most cultivated land, again for about a third of the total employment in the country and for MUR 281.3 millions out of total exports valued at MUR 306.8 millions (LeungLamKo, 1998). Hence, sugar made up of about 92% of total export earnings.

Even now, the sugar industry accounts for a large proportion of the national economy, but with limits of development. The production of sugarcane increased by 7.0% from 4,235,849 tonnes in 2007 to 4,533,000 tonnes in 2008. Sugar production, consequently, went up by 3.7% from 435,972 tonnes in 2007 to 452,062 tonnes in 2008. However, the price of sugar exports received a 37% drop.

Some studies made in the 1960s showed that there were vital barriers to the economic development of the country. Mauritius was different from other African countries in the sense that it lacked natural resources such as mineral and oil deposits. The meagerness of the local market and the geographical disadvantage of the island towards potential foreign markets functioned as a limitation to industrialisation. The Mauritian financial system, excluding the sugar industry, suffered due to shortage of technical and management skills and also investment funds. Therefore, to cope with this condition and to diversify the economy, an Import Substituting Industrialisation (ISI) strategy was adopted as to support manufacturing activities in the economy to decrease imports.

However, the unemployment rate continued to increase. After the independence, to decrease the unemployment rate and dependence on sugar industry, another strategy was adopted: Export-Orientated Industrialisation (EOI).

Few years after the independence, an Export Processing Zone (EPZ), also known as Free Zone was created. It was aimed to allow the country to enjoy special status such as free-tax import of equipment and other materials to be used in the production of goods allocated for export. During the 1970’s, the EPZ appeared as productive strategy. Numerous manufacturing enterprises were set-up in
a short period of time with more than anticipated. LeungLamKo (1998) stated that in the EPZ sector in the year 1971, nine enterprises were formed with 644 employment while in 1981, 107 enterprises set-up having an employment value of 23,601.

Tourism became the third pillar of the Mauritian economy. Although the growth was not linear and sometimes it encountered ups and downs, the tourist industry contribution to the country’s revenue increased decade after decade. In 1970, the tourists’ arrival was about 27.7 thousands while in 1980, it was 115,100. In the year 2007, the tourist’s arrival was 906,971 compared to 788,276 in year 2006 (CSO, 2008). The key touristic attractions in the island are its numerous beaches, attractive tropical climate and marine environment. At the end of December 2008, there were 102 registered hotels in operation, with a total room capacity of 11,488 and 23,095 bed places. The main tourist arrivals are from France, United Kingdom, South Africa, Réunion Island and India. Emphasis is being placed on fortifying the tourism due to the fall of the sugar and textile industries.

At present, the economy of Mauritius lies on sugar, tourism, textiles and apparel, and financial services, and is progressing towards information and communications technology, land-based oceanic industry (seafood hub), healthcare and biomedical industry, the knowledge industry, renewable energy and hospitality and property development.

The Mauritian government is focusing on speeding up the establishment of necessary infrastructure to connect more and more households to Cyberspace, and in effect make the country a “Cyber Island”. As this field continues to emerge stronger and more dynamic, it is expected that the economy of Mauritius to become more vibrant in the coming years.

The seafood hub aims at developing Mauritius into a platform for the storage, processing, and distribution of fresh, chilled, and frozen raw or processed seafood. There is significant potential for value added activities. The extra services associated with the seafood hub would be re-inforced to make Mauritius even more attractive as a calling port for fishing vessels.

1.3 Waste Management System of Mauritius

The Waste Management System in Mauritius consists of Collection by the 9 Local Authorities, Compaction in 5 Transfer Stations and Landfilling at Mare Chicose, which is the sole landfill of the
island.
Waste is collected from households, industries, hotels, wastewater treatment stations, commercial centres, public places like gardens and traffic centres, and even seaweeds from public beaches all around the island. The collection is under the responsibility of the Ministry of Local Government and the Local Authorities, where the latter in some places employ private contractors.
The transfer stations are responsible for compaction of wastes, except from the southern area of Mauritius, before final disposal at the landfill, where the waste from the south is directly disposed.
Waste generation forecast made in 2004, projected an annual growth of 1% to reach about 398,000 tonnes in 2009 and about 510,000 tonnes in year 2034. However, from Table 4.3, it is obvious that the country’s waste generation has already exceeded the 2009 projections.
The cost of municipal waste management in 2005 was MUR 500 millions, that is, about MUR 1548 per household (Scoping Report – Development of a National Programme on SPC, 2007).
Figure 1.3 shows the trend and the proportional relationship between the amount of solid waste disposed in the landfill in tonnes and the GDP per capita of Mauritius from year 1999 to year 2007.

![Solid Waste in Landfill and GDP per capita](image)

Figure 1.3: Solid Waste Disposed in Landfill and GDP per capita

2. Historical Review of Solid Waste Management in Mauritius
The following is a timeline which marked the year of major developments in the solid waste sector in Mauritius.

![Timeline of Solid Waste Management in Mauritius](image)

Figure 2.1: Timeline of Solid Waste Management in Mauritius

Year 1988

National Environmental Action Plan (NEAP)

In 1988, to respond to the understanding that economic growth in Mauritius cannot be sustained without taking notice of the effects that such growth was having on the environment, a first National Environmental Action Plan (NEAP I) was developed. The NEAP I constitutes a detailed and comprehensive review of environmental problems with extensive recommendations for future actions to solve the problems identified.

The actions towards the protection of the environment were formulated in the form of 32 projects under the Environmental Investment Programme (EIP 1). These projects have significantly contributed to the progress made in environmental protection over the past decade, one of the most significant being the establishment of a policy, legislative and institutional framework for environmental management. These projects were classified into seven categories, which are:

1. Institutional Strengthening
2. Land Management and Tourism
3. Industry, Sewerage and Solid Waste Management
4. Agriculture
5. Marine Conservation
6. Terrestrial Conservation
7. Financial Incentives
A National Environmental Action Plan II (NEAP II) was formulated ten years after the implementation of NEAP I, under the National Environmental Strategies. The NEAP I and NEAP II have both classified solid waste management as one of the core environmental problems challenging Mauritius and have favoured the solid waste and wastewater sectors as a priority for financing.

Year 1989

Study made by Jackson

This study had the following recommendations:

- Sanitary landfills were the proposed key method of disposing solid wastes of the island, supplemented by composting.
- It was recommended to improve and modernise the waste collecting vehicle and system as well as distribution of dustbins for domestic waste collection.
- Levy of charges for the collection of commercial and industrial wastes.

Year 1992

Study made by Binnie & Partners – Site identification study for landfill establishment

Two potential sites were identified, namely:

- Mare Chicose (South)
- Mare D’Australia (North)

Year 1994

Study made by Scott Wilson & Kirkpatrick – National Solid Waste Management Plan (NSWMP)

The NSWMP was meant to be used as a basis for solid waste management action planning.

- Two sanitary landfills were proposed to be implemented together with 7 transfer stations for
all the solid wastes of the island.

- Distribution of 75-litre bins to about 240,000 households.
- Modernisation of the collection vehicles and re-organisation of collection labour force.
- Reconsider the legislations, standards and regulations.
- Identification of recycling opportunities.
- Setting up of a composting plant.

Part of the recommendations of the National Solid Waste Management Plan could not be fully implemented due to lack of funds and absence of clear-cut institutions for waste management.

Year 1997

Setting-up of landfill at Mare Chicose

Solid wastes were generally disposed in official dumpsites such as Rich Fond, Beaux Songes, Roche Bois, Poudre D’Or, Mt. St. Pierre, Solferino, La Martinière and St. Martin, and an unspecified number of unauthorised dumps existed throughout the island. However, they were not controlled and a better management and security were required. Some environmental problems reported, as a result of dumping, were emission of air pollutants and odours, contamination of the water table due to infiltration of leachate and contamination of aquatic resources like rivers and the lagoon. For example, the 5 acres Poudre D’Or dumping site received 80 tonnes of wastes per day in 1997 and was situated near to Poudre D’Or village, a sugar factory and the shore. Smoke and odours were the main complains of the inhabitants of the village due to smouldering of part of the dump while the factory complained that loose wastes such as plastic bags were carried by the wind and ended in sugarcane fields. It was also observed that the lagoon was polluted by used tyres, broken glass bottles and so on. Therefore, there was a huge need for an environmentally sound solid waste disposal.

According to the study ‘Site identification study for landfill establishment’ by Binnie & Partners (1992), 2 places were identified as potential sanitary landfill site namely, Mare d’Australia (in the north) and Mare Chicose (in the south). The northern site was abandoned due to opposition by local residents. In 1994, the Ministry of Environment and Quality of Life awarded a contract for the detailed design, tender preparation, appraisal and supervision of works of a landfill at Mare Chicose, which started its
operation in November 1997. This landfill has the aims of easing the problem of the constant increase of production of waste and also to reduce pollution from uncontrolled waste dumps. The Mare Chicose landfill is a fully engineered landfill and had an initial surface area of 20 ha and its planned lifespan was 19 years at a waste generation rate of 400 tonnes per day.

Year 1998

Brown & Root – Feasibility study and an institutional, legal and cost recovery study for an environmental solid waste management programme for Mauritius and Rodrigues

The NSWMP was reviewed following the abandonment of the landfill project at Mare D’Australia. The consultants recommended, among others, the construction of two waste-to-energy incinerators on Build-Operate-Transfer (BOT) or Build-Own-Operate (BOO) Schemes. This recommendation was not based on empirical data and tests, and the World Bank considered that there was a need to take a holistic approach to Solid Waste Management in an integrated manner. This would involve collection, storage, transportation and also the institutional, legal and cost aspects for disposal of both hazardous and non-hazardous wastes.

Year 2000

Fichtner GmbH – Feasibility Study for an Environmental Solid Waste Management Programme (ESWMP) in the Republic of Mauritius

The Feasibility Report contains all the results of the Feasibility Study as well as an Institutional, Legal and Cost Recovery Study for Mauritius and Rodrigues. The Consultants have recommended six scenarios for Solid Waste disposal in the short, medium and long term. The scenarios include landfilling, incineration and composting. Waste generation is also projected for a period covering up to year 2020.

The Government of Mauritius decided based on 2 of the 6 scenarios proposed to adopt the following actions:

- Immediate extension of the Mare Chicose Sanitary Landfill and a National Action Plan for solid waste minimisation.
- Consideration of the implementation of a Waste-to-Power project on a Built-Own-Operate
(BOO) Scheme.

Year 2002

National Solid Waste Management Strategy (NSWMS)

In April 2002, a new National Solid Waste Management Strategy (NSWMS) was approved for implementation, giving greater emphasis, as a matter of priority, to waste minimization, material recycling and recycling through composting. Waste minimization would decrease the amount of waste to be disposed of, thereby decreasing the pressure on Mare Chicose Landfill. Waste recycling is expected to bring economic and environmental gains from a reduction of waste quantities for treatment and disposal. This new strategic plan on solid waste management rests on the following:

- Construction of a waste treatment complex on a BOO basis (incinerator and landfill) for municipal solid waste, hazardous waste facilities;
- Construction of civic amenity centres across the island to handle bulky waste;
- Construction of scrap yards to accommodate scrap cars etc;
- Drafting of a new Waste Management legislation;
- Identification of alternative sites suitable for landfiling;
- Energy recovery from the Mare Chicose landfill;
- Construction and operation of composting plants (on a phased basis starting with the North and the South of the island); and
- Promulgation of more regulations to encourage waste reduction, reuse and recycling.

In 2002, it has been estimated that around 12% (approximately 150 tonnes/day) of municipal waste was not collected while some 25 tonnes of construction and demolition wastes per day were disposed of in an uncontrolled and illegal manner. The new NSWMS addressed serious environmental problems such as littering and dumping.

Year 2004

Study made by Carl Bro – Feasibility study for the management of municipal solid waste and
hazardous waste & identification of a site for a new municipal solid waste landfill

- Preparation of a build, own and operate bidding document for a sanitary landfill for municipal solid waste and hazardous waste, a pre-treatment and incineration facility for hazardous waste and a waste-to-energy facility for municipal solid waste.
- Current waste characteristics do not render waste incineration with energy recovery a suitable waste treatment method as the low calorific value of waste was due to a large portion of green wastes from yards and kitchens. As a result, incineration cannot be sustained without an auxiliary fuel.

Year 2006

Taxation on plastic carry bags

This regulation was made in place so as to control the use of plastic carry bags in Mauritius. An action plan was elaborated for the decline of the use of plastic carry bags. The economic tool used was a tax of MUR 1.15 on each plastic carry bags. The use of plastic bags has now decreased by more than 75% in supermarkets (Scoping Report – Development of a National Programme on SPC, 2007).

Year 2008

National Programme on Sustainable Consumption and Production (SCP)

In 2008, the Ministry of Environment and NDU in collaboration with UNEP devised an Action Plan on Integrated Solid Waste Management and Recycling for a period of 2008 to 2013 under the umbrella of National Programme on Sustainable Consumption and Production (SCP) for Mauritius (2008-2013). The following is a list of the constraints identified in the solid waste management in Mauritius from the Action Plan:

1. Lack of financial resources. A variety of ways to finance waste management needs to be explored.
2. Inadequate number of vehicles for waste collection and disposal services.
3. There is a larger potential for composting the organic waste component of MSW. For example, composting of food wastes in the hotel and restaurant sector has not taken off.

4. There is no waste disposal fee and hence, waste generators in the commercial sector have no motivation for recycling initiatives.

5. Policies such as Extended Producer Responsibility (EPR) are not well established.

6. There is an informal waste sector where working conditions need to be improved and the system better managed.

7. The public sector can play a greater role through public procurement of recycled materials and waste recycling.

The overall goals of the Action Plan up to year 2013 are specified as follows:

1. Establish an Integrated Waste Management System in all Municipalities and District Councils in the next 2-3 years.

2. Increase the recycling of industrial and commercial waste with a focus on cardboards, plastics and paper by at least 25% over the next 5 years compared to 2007.

3. Increase the amount of waste going for composting from the hotel and domestic sector by at least 25% and 10% respectively over the next 5 years compared to 2007.

3. Institutional and Legal Aspects

3.1 Institutional framework

Governmental bodies have been set-up to prioritise the development in the environment sector in Mauritius. They are the institutions that govern the solid waste management in Mauritius. The governmental bodies are the Ministry of Environment and National Development Unit, Ministry of Local Government, Rodrigues and Outer Islands, and the Local Authorities.
3.1.1 Ministry of Environment and NDU

The Ministry of Environment and National Development Unit (NDU) is the responsible body for drafting standards and policy formulation. Moreover, it has the responsibility of issuing permits for waste management operations through EIA (Environment Impact Assessment) licenses and PER (Preliminary Environment Report). The Ministry also attends complaints recorded at the Pollution Prevention & Control Division and at the Police de L’Environnement made by the public regarding environmental pollution.

The Pollution Prevention & Control Division of the Department of Environment performs frequent observation of environmental hot-spots to avoid environmental pollution and degradation; guidance is also offered on the mode to avert air, noise and water pollution and on appropriate solid waste management system.

The Ministry of Environment through its Information & Education Division also provides assistance to pass on Environmental Education (EE) in the non-formal sector. Awareness campaigns and mass sensitisation through talks, educational trips, and nature discovery tours, seminars and clean-up operations are part of the EE programme. Bins and decorative plants are also distributed during clean-up operations.

The National Environment Fund (NEF) provides assistance to NGOs, and other organisations who want to promote and enhance the environment through environmental projects.

The Ministry of Environment house an NGO desk that offers encouragement and technical assistance to NGOs registered at the Ministry.

Further, the Ministry provides services like infrastructure upgrading and enhancement of the environment. Rehabilitation and embellishment of sites have been done such as public gardens, river banks, jogging tracks, leisure parks, caves and so on.

3.1.2 Ministry of Local Government, Rodrigues and Outer Islands

The Ministry of Local Government, Rodrigues and Outer Islands is in charge of the local government administration coordination together with Local Authorities (5 Municipalities, 4 District Councils and 124 Village Councils). The Ministry obtains revenue from its activities as well as from grants from the
governmental budget to enable Local Authorities offer services at regional level. These consist of maintenance of roads, drains and public places, provision of street-lighting, construction and provision and maintenance of bus shelters and traffic centres, organisation of sports and cultural activities, and so on.

The Ministry is also responsible for the solid waste management in the Republic of Mauritius. Collecting and safe disposal of solid waste, setting-up and operating transfer stations and sanitary landfill, issuing waste carrier’s licences, and control of illegal dumping are the duties of the Solid Waste Management Unit of the Ministry. Additionally, the function of the Ministry includes a statutory obligation to carry out in practice the decisions taken by the National Environment Coordination Commission presided by the Prime Minister and on which the Ministry of Local Government sits personally.

Furthermore, the Ministry is in charge of the control and management of public beaches. A parastatal body, named Beach Authority, has been set-up under the guidance of the Ministry to perform particular tasks like the provision of amenities on and enhancement of public beaches, regulation of economic and socio-recreational activities on public beaches, and the execution of safety measures for beach-users.

Other responsibilities of the Ministry are the implementation of cyclone and other natural disaster programmes; provide guidelines for the disposal of hazardous wastes; consider complaints concerning the issue of trade licences, development and building permits by the Local Authorities; collection and disposal of solid waste and other environmental linked problems; and carry landscape works across the island.

3.1.3 Local Authorities

The Local Authorities consist of 5 municipalities, 4 district councils and 124 village councils.

The municipalities are listed as:

1. Municipality of Port Louis
2. Municipality of Beau Bassin/Rose Hill
3. Municipality of Quatre Bornes
4. Municipality of Vacoas/Phoenix
5. Municipality of Curepipe

The district councils are as follows:
1. Pamplemousses Rivière du Rempart District Council
2. Moka Flacq District Council
3. Grand Port Savanne District Council
4. Black River District Council

The Local Authorities have to ensure compliance with the Health Regulations, Market & Fair Regulations as legislated by the Authorities themselves from time to time as per Section of the Local Government Act.

Municipality of Port Louis

Factors like business monitoring, markets, fairs and auction sites, taxes, cemeteries, public thoroughfare and sanitation are the priorities of the Health and Environment Department of the Municipality of Port Louis. It has the aim of ensuring that all individuals and economic operators abide by the prescribed law with regards to sanitation. The department also provides services which are essential to maintain sound and healthy conditions within the township. Some responsibilities are refuse collection from private premises and public commercial premises along with cleaning of roads, public places, water courses, drains and canals as well as maintenance of traffic centres and places of public convenience.

Municipality of Beau Bassin/Rose Hill

The Health Department of Beau Bassin/Rose Hill Municipality employs 24 Health and Market Inspectors, 237 Refuse Collectors and 15 Market Cleaners who are responsible for the proper running of the scavenging service throughout the town. Refuse is collected weekly in residential premises and a daily service to commercial premises. A lorry service is provided against payment of a fee of Rs 200 per trip for bulky waste/ green waste. The markets are cleaned by 15 cleaners whereas the
Municipality employs private contractors for cleaning of fairs.

Municipality of Quatre Bornes

The Municipality together with private contractor provide scavenging service in the town of Quatre Bornes. To provide efficient service, the town is divided into four regions, out of which 3 are serviced by the Municipality and 1 is serviced by private contractor. Refuse collection is done twice per week in the region serviced by private contractor while once a week scavenging is done in regions of concern by the Municipality. However, during the winter season, the latter provides a twice per week service in some regions. The Municipality employs 215 refuse collectors and 25 drivers along with 11 tipper lorries and 2 compactor lorries.

Municipality of Vacoas/Phoenix

The Health and Environment Department of Municipality of Vacoas/Phoenix has the tasks of creating and maintaining a clean and healthy environment in the township. The department provides services such as refuse collection, cleaning public places, management of markets and so on. Daily refuse collection service in commercial areas including town centre as well as the sub-centres and a twice a week service in residential areas are made available. The roads in the town centre are cleaned everyday and two times a week in other areas. The Municipality also extends its assistance to operations such as domestic clean-ups (MUR 300 fee), general clean-ups (MUR 300 fee), marriage clean-ups (free of charge), communal clean-ups (free of charge) and bulky waste (MUR 300 fee).

Municipality of Curepipe

The Municipality through its Public’s Health Department has the role of organising and supervising waste collection, cleaning of roadside and storm water drains, and eradication of environmental nuisances as well as control of rat proliferation. Scavenging service is provided daily in the town centre, weekly for kitchen waste, fortnightly for garden waste and against payment on request.
Approximately 20 km of rivers and rivulets are cleaned at least thrice per year. Sweeping of the town centre is performed daily whereas sweeping of all roads and open drains are done at least on a fortnightly basis. The department employs a labour force of 364 excluding health inspectors.

Moka Flacq District Council

The Public Health Department of Moka Flacq District Council collects and disposes refuse in 36 village council areas, which is one of its main activities. The department makes use of a fleet of 20 vehicles to collect about 120 tonnes per day of domestic refuse and to dispose it in transfer stations, namely at Poudre D’Or, St. Martin, La Brasserie and La Laura. To provide effective service, the District Council purchased bins and vehicles like compacted lorries, recruited 90 refuse collectors.

Black River District Council

Since 1989, the Black River District Council via its Health Department organises and supervises the collection and disposal of refuse and general cleaning of 16 villages of the council area. The scavenging service, with 6 compactor lorries and 9 tipper lorries, is provided twice a week to households and daily to hotels and restaurants throughout the council’s jurisdiction. About 150 tonnes of refuse are collected daily and are disposed to St. Martin Transfer Station. The Council employs private contractors which include a labour force of 130 people for waste collection and transport. The district has a population of 63,137 inhabitants and 20,600 households (BRDC, 2009). The main roads and public places are swept and cleaned daily. As per the Black River District Council Collection and Disposal of Refuse Regulation, a monthly scavenging fee is claimed from every economic operator while the same service is provide to residential premises free of charge. A fine of MUR 10,000 is imposed to discourage illegal dumping and enhance public health and hygiene with the council area.

3.2 Legal and regulatory framework
The principal act governing solid waste in Mauritius is the Environment Protection Act (EPA) 2001. The EPA has the aim “to provide for the protection and management of the environmental assets of Mauritius so that their capacity to sustain the society and its development remains unimpaired and to foster harmony between quality of life, environmental protection and sustainable development for the present and future generations; more specifically to provide for the legal framework and the mechanism to protect the natural environment, to plan for environmental management and to coordinate the inter-relations of environmental issues, and to ensure the proper implementation of governmental policies and enforcement provisions necessary for the protection of human health and the environment of Mauritius.”

The EPA 2002 provides a legal framework and the system to protect the natural environment, and to plan for environmental management Plans and Policies. It is also a statutory requirement for projects to get hold of EIA Licence.

To carry out its responsibilities effectively, the functions and duties of the Ministry of Environment and NDU are directed mainly under fractions of legislations, listed as follows:

- Environment Protection (Polyethylene Terephthalate (PET) Bottle Permit) Regulations 2001
- Environment Protection (Plastic Carry Bags) Regulations 2004
- Environment Protection (Banning of Plastic Banners) Regulations 2008
- Environment Protection (Affixing of Posters) Regulations 2008

For the Ministry of Local Government, Rodrigues and Outer Islands, the regulations are listed below:

- The Local Government Act 2003
- The Beach Authority Act 2002
- The Local Government (Dumping and Waste Carriers) Regulations 2003
- The Beach Authority (Traders' Licence) Regulations 2004
- The Beach Authority (Use of Public Beach) Regulations 2004
- The Environment Protection Act 2002 (Part X)
- The Local Government (Registration of Scavenging Contractors) Regulations 2004
3.3 Enforced Regional and International Conventions and Protocols for Solid Waste

‘Bamako Convention’ on the Ban of the Import into Africa and the Control of Transboundary Movement of Hazardous Wastes within Africa’ which was ratified on 29th October 1992
This treaty of African nations is based on the Basel Convention. The main purposes of the Convention are to prohibit the import of all hazardous and radioactive wastes into the African continent for any reason; to minimise and control transboundary movements of hazardous wastes within the African continent; and to ensure that disposal of wastes is conducted in an environmentally sound manner.

‘Basel Convention’ on the Control of Transboundary Movements of Hazardous Wastes’ which was ratified on 24th November 1992
This international treaty was devised to reduce the movements of hazardous waste (however, not addressed to radioactive waste) between nations, and specifically to prevent transfer of hazardous waste from developed to less developed countries (LDCs). Also, the Convention was designed to reduce the amount and toxicity of wastes generated and to help the LDCs in environmentally sound management of the hazardous and other wastes they generate.

This regional treaty was designed mainly to promote environmentally sound sustainable development and management of marine and coastal systems in the region; to prevent pollution of the coastal environment from activities within the States of the region or from operations primarily subject to jurisdiction of non-coastal States; to provide for protection and rational development of coastal and marine resources.

This international treaty, one of the most important marine environmental conventions, was designed
to reduce pollution of the seas, including dumping, oil and exhaust pollution. It has the objective, as stated, to preserve the marine environment through the complete elimination of pollution by oil and other harmful substances and the minimization of accidental discharge of such substances.

4. Current Solid Waste Management

4.1 Management System

4.1.1 Waste generation

Solid waste is generated from activities such as industrial, household, commercial, wastewater
treatment, and construction and demolition activities. Increase in the trend of solid waste generation is noted each year and it can be attributed to the rise in the standard of living and in the number of incoming tourists, and also due to the frequently visiting cyclones, local and international shows, and development of the country.

Waste generation rate in 1997 was 12,000 tonnes per month, that is, 400 tonnes per month (Report to the Commissioner – Mare Chicose Landfill, 2004). According to Fichtner (2000), the waste generation rate of Mauritius was estimated to be 1,218 tonnes per day in 1999. In 2002, Mohee (2002) reported that the average solid waste generation rate was 1.3 kilogram per capita per day.

The island of Mauritius had a population of 1,230,975 in 2007 (CSO, 2008). From Table 4.3, 394,118 tonnes of solid waste have been disposed in the landfill. Considering 312 to be the working days of Local Authorities, the amount of wastes disposed was 1263 tonnes per day, that is, 1.03 kilogram per capita per day. However, according to Fichtner (2000), about 12% of wastes generated are not disposed. Therefore, from the 394,118 tonnes of waste disposed in year 2007, 444,412.6 tonnes are generated. As a result, 1414.8 tonnes of waste were generated per day. In other words, 1.15 kilogram of wastes per day per capita have been generated in year 2007.

Fichtner (2000) classified the composition of waste of Mauritius in 1999 as Total Municipal Waste 70%, Industrial Non-Hazardous Waste 15%, Construction & Demolition Waste 11%, Hazardous Waste 5%, Health Care Waste 0.2%, and Sludge 0.08%.
Mohee (2002) reported that the composition (on a weight basis) in 2002 were as follows: Food Waste 25%, Yard Waste 43%, Plastics 13%, Paper 12%, Textiles 3%, and Metals 1%. The moisture content of the waste was around 48% and the calorific value of the mixed wastes was around 18,800 kJ/kg on a dry weight basis.

Other studies were made on specific type of wastes.
Mohee (2005) studied the characteristics of medical wastes in healthcare institutions in Mauritius. She found that approximately 10% of solid wastes from medical institutions were hazardous in nature, consisting mainly of infectious, pathological and chemical wastes. From the study, the average amount of hazardous wastes per patient per day was found to be 0.072 kg at Jeetoo hospital (Port Louis), 0.091 kg at SSRN hospital (Pamplemousses) and 0.179 kg at Clinic Mauricienne (Réduit).
Baynath (2005) reported that 422.46 tonnes of used tyres were disposed at Mare Chicose Landfill in the year 2004, 243 tonnes in year 2002, and 379.36 tonnes in 2003.
According to the Ministry of Local Government, seaweeds are collected and disposed in the landfill. It has been reported that 55.7 tonnes of seaweeds are collected in winter (peak season) while 35.2
tonnes in summer on a daily basis around the island in 2009.

4.1.2 Waste Handling and Storage

Solid waste is collected and stored in bins provided by the Local Authorities to waste generators. On collection days, the bins containing waste are placed on roads (the route covered by collecting vehicles) by the waste generators ready for collection. Bins can be seen that have been placed in traffic centres, on roads, near bus-stops, and so on as shown in Plates 4.2 and 4.3.

Plate 4.1: Bins provided by Local Authorities

Plate 4.2: Bins on public road
Plate 4.3: Bins in public area
4.1.3 Collecting Systems

Collection of solid waste is carried out daily in some places like commercial districts while weekly in others. Collection and transportation are under the responsibilities of the Ministry of Local Government and Local Authorities, which do the waste collection within their respective jurisdiction. In some areas, Local Authorities employ private contractors to collect the solid waste, namely Maxiclean, Mauriclean, Securiclean and ATICS. The collection is carried out by different types of rear-loaded trucks such as open truck and compactor truck as shown the Plates 4.4 and 4.5. In 2002, there was manpower of 2,243 people and 133 vehicle fleets involved in the collection of waste throughout the whole island (Bhangroop, 2006).

Collection by trucks is generally done on a door-to-door basis for residential places as well as in commercial places. Another form of solid waste collection is the Drop-off Centres, as shown in Plate 4.6, a container has been placed for the public to throw PET bottles. After a period of time, the bottles gathered are sent to plastic recycling plants.
The Municipality of Curepipe has recently taken the initiative recently to place coloured bins in various places in the town. The coloured bins are meant to collect paper, plastic, metal cans and general trash separately from the public as shown in Plate 4.7. The collected waste will then be transferred to appropriate recycling plants to either produce finished goods or to prepare them to export for further processing.
Fichtner (2000) has estimated that around 12% of the generated municipal solid waste is not collected. There are still open burning practices in backyards today as shown in Plate 4.8. This shows that the actual solid waste collection system is inadequate.

Plate 4.8: Open burning

4.1.4 Transfer Stations

At present, there are 5 transfer stations around the island for compacting solid wastes before final
disposal at the landfill. These are located at La Brasserie, Roche Bois, St. Martin, Poudre D’Or and La Laura. The transfer stations are equipped with weighbridge for recording incoming and outgoing wastes. The wastes at the transfer stations are either compacted into two sizes of closed containers and one closed semi-trailer with typical waste loads of 12-13, 17-18 and 19-24 tonnes respectively or loaded without compaction into large open semi-trailers with typically 15-20 tonnes of wastes (Carl Bro Intelligent Solutions, 2004). Part of the solid wastes collected in the southern region of the island are directly disposed in the landfill.

Table 4.1 shows the list of transfer stations together with their geographical area of concern.

<table>
<thead>
<tr>
<th>Transfer Stations</th>
<th>Start year of operation</th>
<th>Present operator</th>
<th>Catchment area</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Brasserie</td>
<td>1991</td>
<td>Securiclean (Mauritius) Ltd</td>
<td>Curepipe, Vacoas, Phoenix, Part of Beau Bassin and Rose Hill.</td>
</tr>
<tr>
<td>St. Martin</td>
<td>1995</td>
<td>Securiclean (Mauritius) Ltd</td>
<td>Beau Bassin, Rose Hill, Q.Bornes, District of Black River, P. aux Sables, La Tour Koenig, GRNW and Corommandel.</td>
</tr>
<tr>
<td>Roche Bois</td>
<td>1992</td>
<td>Securiclean (Mauritius) Ltd</td>
<td>Port louis and part of the Northern Region (Ste Croix, Roche Bois, and Baie du Tombeau).</td>
</tr>
<tr>
<td>Poudre D’Or</td>
<td>2000</td>
<td>Maxiclean Co. Ltd</td>
<td>Districts of Pamplemousses and Riv. Du Rempart excluding Terre Rouge and Long Mountain Village Councils Areas</td>
</tr>
<tr>
<td>La Laura</td>
<td>1992</td>
<td>Atics Ltd</td>
<td>District of Moka Flacq.</td>
</tr>
<tr>
<td>Mare Chicose (Landfill)</td>
<td>1997</td>
<td>JV Sotravic Ltée /Bilfinger Berger</td>
<td>Receive waste from Transfer Stations and the southern regions of the island.</td>
</tr>
</tbody>
</table>

(Source: Ministry of Local Government, Mauritius)

4.1.5 Landfill
Mauritius has only one landfill which is located at Mare Chicose. The landfill had an initial surface area of 20 hectares and its planned lifespan was 19 years at a waste generation rate of 300 tonnes per day. At present, the landfill has a surface area of 32 hectares, comprising of 6 cells, with an average monthly input of 36,000 tonnes. Since its beginning of operation year 1997, the landfill was managed by private contractor STAM (Société de Traitement et d’Assainissement des Mascareignes) Ltée up to the year 2006 and up to now, it is being managed by JV Sotravic Ltée/Bilfinger Berger. The accumulated amount of waste in the landfill as at January 2009 was 3,530,065.5 tonnes. Solid wastes disposed via the 5 transfer stations, represent 80-85% of total waste collected, while the remaining 15-20% waste are collected from the southern region of the island and disposed directly to the landfill.

The landfill produces about 500 m3 leachate per day on average, which is carted away by trucks and is treated at the St. Martin Treatment Plant. Gas extraction and flaring has been carried out since 2001. The number of gas wells drilled is 35 presently, but will increase to 100 after the extension of the landfill. The gas produced is flared at a rate of 800 Nm3 per hour.

Four times a month, dust monitoring and waste analyses are done. Fogging and larviciding is carried out twice per week while noise monitoring is done twice per month. Gas monitoring in boreholes is achieved once per month whereas gas is analysed in gas wells daily. The working surface area is covered everyday with soil or synthetic cover. Leachate is analysed twice per month and leachate is monitored on a daily basis from different leachate wells. Ground water and surface water are sampled every 3 months.

The cell 6 of the landfill is actually under construction to accommodate waste in the near future. Gas wells are also being constructed to capture and flare methane gas and for the production of electricity. Capping works are also being carried out with the objectives to reduce production of leachate and to reprofile the existing cells to give its original shape.
At present, the landfill contains 6 cells out of which 4 have reached it full capacity. Table 4.2 gives the size of each cell in terms of square metre.

<table>
<thead>
<tr>
<th>Cell Number</th>
<th>Size (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21,456</td>
</tr>
<tr>
<td>2</td>
<td>33,996</td>
</tr>
<tr>
<td>3</td>
<td>29,372</td>
</tr>
<tr>
<td>4</td>
<td>24,480</td>
</tr>
<tr>
<td>5</td>
<td>48,527 (In operation)</td>
</tr>
<tr>
<td>6</td>
<td>45,000 (Under construction)</td>
</tr>
</tbody>
</table>

At start of operation, the landfill consisted only of 3 cells. Due to the rapid increase in solid waste disposal, the lifetime of the landfill was increased by its expansion. Cell 5 is actually in use and another cell is under construction.

Table 4.3 shows the amount of solid waste as well as its composition disposed in the landfill from its year of operation up to 2007.

The composition of wastes received at the landfill since its operation:
Table 4.3: Composition of solid wastes in Mare Chicose landfill site from end 1997 to 2007

<table>
<thead>
<tr>
<th>Year</th>
<th>Amount of wastes collected /tonnes</th>
<th>Paper /tonnes</th>
<th>Plastics /tonnes</th>
<th>Glass /tonnes</th>
<th>Metal /tonnes</th>
<th>Organics /tonnes</th>
<th>Electronics /tonnes</th>
<th>Ceramics /tonnes</th>
<th>Misc. /tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>45,065</td>
<td>5,534</td>
<td>4,353</td>
<td>820</td>
<td>2,249</td>
<td>31,802</td>
<td>36</td>
<td>787</td>
<td>39</td>
</tr>
<tr>
<td>1999</td>
<td>157,489</td>
<td>19,340</td>
<td>22,820</td>
<td>2,866</td>
<td>7,859</td>
<td>111,660</td>
<td>126</td>
<td>787</td>
<td>137</td>
</tr>
<tr>
<td>2000</td>
<td>245,682</td>
<td>30,170</td>
<td>23,733</td>
<td>4,471</td>
<td>12,260</td>
<td>173,378</td>
<td>197</td>
<td>1,228</td>
<td>214</td>
</tr>
<tr>
<td>2001</td>
<td>302,045</td>
<td>37,091</td>
<td>29,178</td>
<td>5,497</td>
<td>15,072</td>
<td>213,153</td>
<td>242</td>
<td>1,510</td>
<td>263</td>
</tr>
<tr>
<td>2002</td>
<td>346,335</td>
<td>42,530</td>
<td>33,456</td>
<td>6,303</td>
<td>17,282</td>
<td>244,409</td>
<td>277</td>
<td>1,732</td>
<td>301</td>
</tr>
<tr>
<td>2003</td>
<td>374,186</td>
<td>45,950</td>
<td>36,146</td>
<td>6,810</td>
<td>18,672</td>
<td>264,063</td>
<td>299</td>
<td>1,871</td>
<td>326</td>
</tr>
<tr>
<td>2004</td>
<td>376,186</td>
<td>46,196</td>
<td>36,340</td>
<td>6,847</td>
<td>18,772</td>
<td>265,475</td>
<td>301</td>
<td>1,881</td>
<td>327</td>
</tr>
<tr>
<td>2005</td>
<td>385,991</td>
<td>47,400</td>
<td>37,287</td>
<td>7,025</td>
<td>19,261</td>
<td>272,394</td>
<td>309</td>
<td>1,930</td>
<td>336</td>
</tr>
<tr>
<td>2006</td>
<td>417,729</td>
<td>51,297</td>
<td>40,353</td>
<td>7,603</td>
<td>20,845</td>
<td>294,791</td>
<td>334</td>
<td>2,089</td>
<td>363</td>
</tr>
<tr>
<td>2007</td>
<td>394,118</td>
<td>48,398</td>
<td>38,072</td>
<td>7,173</td>
<td>19,666</td>
<td>278,129</td>
<td>315</td>
<td>1,971</td>
<td>343</td>
</tr>
<tr>
<td>Total</td>
<td>3,044,826</td>
<td>373,905</td>
<td>301,737</td>
<td>55,416</td>
<td>151,937</td>
<td>2,149,253</td>
<td>2,436</td>
<td>15,786</td>
<td>2,649</td>
</tr>
</tbody>
</table>

(Source: Ministry of Local Government, Mauritius)
Figure 4.5: Trend in composition of solid wastes in Mare Chicose landfill from end 1997 to 2007

Figure 4.5 shows the amount of solid wastes disposed from the time the landfill started operation up to the year 2007. It can be observed that the amount of wastes generated per year in Mauritius increased each year and in 2006, there was a peak of 417,729 tonnes. In 2002, the country was visited by tropical cyclone Dina. In 2006, huge cleaning campaigns were done all over the island due to the outbreak of Chikungunya virus which is spread by the bite of infected mosquitoes.

Figure 4.6 shows the composition (%) of solid wastes collected at the landfill from its operation up to November 2007.

As shown in Figure 4.6, the waste stream of Mauritius consists of about 70% organics, followed by about 12% paper. Hence, there is a large scope of composting.

The Figure 4.7 shows the constitution of solid waste in terms of domestic, hazardous, industrial, textile, sludge, construction wastes and others.

Most of the waste disposed at Mare Chicose Landfill is from domestic sector (95%). Industrial waste and textiles waste are 0.2% each while sludge from treatment plants forms 2% of the waste stream. Rubber tyres that end up in the landfill site are 1% of the waste stream. Poultry waste is 1.5% and
construction waste is 0.1% of the total waste received at the landfill.

Figure 4.6: % composition of solid wastes in Mare Chicose landfill site from end 1997 to 2007

Figure 4.7: Types of wastes disposed at Mare Chicose Landfill site
4.2 Recycling Plants

Recycling of solid wastes has always been considered in action plans and as recommendations in studies to minimise solid waste disposal. However, recycling in Mauritius is still in its infancy. There are only a few companies that are involved with recycling of paper, plastic, textile, glass, scrap metals and composting, and these are solely private companies.

- **Plastic Recycling Plants**

Plastic waste recycling is carried out by the Plaspak Group, Polypet Recyclers Ltd, Plastic Recycling Ltd.

Plaspak Group

Plaspak Group is a recycling facility which processes about 1 tonne per day of waste plastics and operates since 1980. Before processing, industrial wastes are separated to remove uncontaminated High Density Polyethylene (HDPE), Polypropylene (PP) and Low Density Polypropylene (LDPE) plastics which are then transformed into bin bags and sheeting and are sold locally. The facility is moving towards the manufacture of recycled packaging.

Polypet Recyclers Ltd

Polypet Recyclers Ltd, located at Solitude since December 2004, processes approximately 2 tonnes of plastic wastes per day. The company is responsible for collection of plastics from public beaches, restaurants and hotels with 3 trucks, and buys at MUR 6 per kilogram from people who collect the waste from Roche Bois Transfer Station. The plastic waste to be processed consist mainly polyethylene (PET) and polypropylene (PP). The plant employs about 30 people and the wastes are flaked for further processing in Nigeria, where they are converted into pellets. The pellets are then sent to South Africa where they are transformed into finished products such as detergent bottles. The plant found that the amount of waste collected is low even though it had placed drop-off centres all over the island. However, this method was found to be not effective. The company receives support from the government in terms of formalities facilitation and tax. The company does not pay tax as
they have a legal agreement with Mauritius Soft Drinks Bottles Association.

Plastic Recycling Ltd

Plastic Recycling Ltd, sited at Riche Terre Industrial Zone, is a private company lead by Ireland Blyth Ltd, which operates since the year 1989. Only HDPE, LDPE and PP plastics are collected and processed. The company collects about 14 tonnes per month, but when the company was located at Solitude, it collected about 40 tonnes per month. The wastes are collected from textile industries, hotels and mainly by people collecting at Roche Bois Transfer Station. The plant processes the waste into finished products such as plastic bags and plastic sheets. Other goods like garbage bags and blinds are also manufactured. The company buys the wastes at MUR 5 to 10 per kilogram depending on the availability and types. The recycling plant employs about 70 people and finds that there is severe competition which leads to low amount of wastes collected, and also other raw materials are expensive.

- **Paper Recycling Plants**

Companies that recycle paper wastes in Mauritius are: Dakri Paper & Products Ltd, AgriPac Ltd, Atics and Lagtex Co. Ltd.

AgriPac Ltd

AgriPac Ltd is a paper recycling plant which is in operation since 1980 and handles about 1 tonne per day of paper wastes, which is either collected twice a week by the company’s vehicles or disposed freely by paper waste generators, such as banks, printing press and industries working with paper. The costs of collection are about MUR 6000 per week. The facility processes waste paper (office paper, newspaper and non-corrugated paper), excluding glossy ones and cardboard, to produce egg-holders as end product which is mainly sold on the local market mainly as well as international markets like Seychelles, Madagascar and Reunion. Only 9 people are employed directly. The company observed that on of the constraints is that sometimes mixed wastes are obtained, and in December the amount of wastes gathered is low due to the fact that the type of paper available are gift wrappings and decorative papers which cannot be processed by the plant.
Lagtex Co. Ltd
Lagtex Co. Ltd found at Riche Terre Industrial Zone recycles both paper and textile wastes. The company is in operation for the last 30 years and employs about 100 people. The plant collects the textile wastes from textile industries while the paper wastes such as office paper, newspaper and magazines. Wastes are collected everyday and to do so, the company has 4 trucks (3 persons for each truck as driver and helper). The transportation costs are about MUR 20,000 per month. The amount of wastes varies with season and on average, about 500 tonnes are collected weekly. The paper wastes are separated based on types and the textiles based on colours, and these are then compacted and baled before being exported to Singapore, China and Europe. The plant remarked that paper wastes are easily available while with the closing of textile industries, the amount of textile wastes collected is affected.

Dakri Paper & Products Ltd
Dakri Paper & Products Ltd located at Bambous carries out paper recycling activities, especially carton paper, since 1997. The plant buys waste paper chiefly from supermarkets and people who do collection to earn a living. The company has placed its own paper collecting bins near hypermarkets. About 180 tonnes are collected every month, which represents one-third the capacity of the plant. The company is not satisfied with collection system and the high level of contamination. The company processes the waste into finished goods with a workforce of 20 people. The peak season reported is November and December.

- Metal Recycling Plants
6 metal recycling plants are in operation in Mauritius, namely, Runghen G. & Co, Samlo-Koyenco Co. Ltd, Scrap Supplies, Steel Scrap Co. Ltd, A.B. Soobratty & Co. and The Pillay Group.

Runghen G. & Co.
Runghen G. & Co. started operation in 1967 and processes ferrous, non-ferrous metals and e-scaps. On average, about 8 tonnes of metals per day are collected. For the collecting methods, the company
hires registered scrap metal carriers for door-to-door collection and employs collectors to gather metals from factories and workshops. Runghen G. & Co. prepares the metals for export by sorting, grading and briquetting, ready for foundries. Rejects such as plastic and rubber and the removed attachments from the metals are all exported. The main concern of the company is lack of labour.

Steel Scrap Co. Ltd

Steel Scrap Co. Ltd, located at Plaine Lauzun Industrial Zone, operates since the year 1960, and has a workforce of about 25 people. The company does compaction of non-ferrous metals and also flakes PET bottles, both of which are exported to countries like India, China and South Africa. The raw materials are obtained by people who collect and sell them to the plant. Some people collect the materials around the island while others gather them from Roche Bois Transfer Station. The plant buys the plastic bottles at MUR 6 per kilogram while the non-ferrous metals are bought at MUR 30 per kilogram. About 6 to 7 tonnes of PET bottles and 10 tonnes of non-ferrous metals are collected on a weekly basis with summer and festive seasons as peak season. The company does not do complete recycling due to high investment costs. Moreover, the company has the constraints of the costs of employing local skilled technicians for repairs and maintenance and also, the variation in the quantity of wastes.

Samlo-Koyenco Ltd

Samlo-Koyenco Ltd, sited at Midlands, produces high tensile construction steel bars from scrap metals. About 200 tonnes of scrap metals are handled per week. The metals are obtained daily from scrap suppliers and the plant has a contract with Local Authorities. The metals are bought ranging from MUR 400 to 2500 per tonne, depending on the quality and state of the wastes. The bars are manufactured under guidelines set by the MS 10:1999.

- **Glass Recycling Plant**

The Mauritius Glass Gallery is the only glass recycling plant of the island operating since 1990. It has a capacity of 350 kilogram per day. The plant collects broken window panes, glass bottles, drinking and
wine glass from hotels and breweries and also those disposed by the public. The glass is melted at 1200°C to manufacture finished products such as vases, drinking glass and decorative products, which are all sold to tourists and general public. Rejected products are put back to the furnace. The company has total cost of about MUR 550,000 per year (collection, processing and manufacturing recycled glass).

4.3 Composting

The University of Mauritius and Prof. Mohee have been intensively involved in composting projects and studies in Mauritius as well as in Rodrigues to promote sustainable agriculture practices, empowerment of women at community level, and management of solid wastes. These development in composting are listed below:

Demonstration project at National Federation of Young Farmers’ Club (NFYFC)

NFYFC, a non-governmental organisation (NGO) of planters in Mauritius, has moved towards sustainable agriculture practices. NFYFC has considered composting as the technique to produce ‘organic fertilisers’. Hence, both large scale and individual projects were conducted, specifically, composting of chicken wastes and bagasse, one using windrow technology and the other using the system of the rotary drum composters. At present, NFYFC trades its compost at MUR 20 a packet of 2 kilogramme.

Domestic wastes recycling by regional women association (2006 – 2007)

A ‘Train the Trainers’ project in Compost Making was done in women associations which had the activities of characterising the organic part of the municipal solid wastes, making compost at household level and utilisation of compost in the vegetable and fruit growing activities of the communities. The trained women were in turn trainers who have the responsibilities of training other women with the mentioned activities. In total, around 2000 women were trained in compost making and the compost sold to promote entrepreneurship. This project has led to a *National Empowerment*
Project being developed for housewives to develop small enterprises out of compost making, compost marketing and compost and selling.

Composting of green wastes with and without bioculum
A study was conducted on the effect of composting green wastes with and without bioculum, which is a composting additive. This study was requested by Solid Waste Recycling Co. Ltd, an oncoming national composting plant (see Section 5.1).

Some composting studies were conducted in Mauritius as well as in Rodrigues funded by the UNDP GEF/Small Grants Programme listed as follows:

• Rodrigues
In Rodrigues, four composting projects are being carried out, namely: developing sustainable agricultural practices in Rodrigues through capacity building in composting, the sustainable animal waste management in Rodrigues, the pilot demonstration facility for windrow composting of agricultural wastes and production of biovegetables, and the domestic solid waste recycling at community level in Rodrigues. These projects focus on the knowledge in science and technology of composting, enhance the use of environmentally friendly technologies and the use of compost as an alternative to fertilisers.

• Horse manure composting
A horse manure composting study was carried out for an NGO, Les Mariannes Cooperative, which has the assignment as waste carrier for horse manure. A ‘Horse waste composting facility’ was designed from waste reception for the generation rate of around 150 tonnes per week to the sales of compost. Currently, the compost produced is being used on farms by the members of the cooperative society and also sold to community planters.

• Organic farming at Chamarel
The main objective of project was to initiate organic farming practices on 1.15 hectares of land
belonging to a NGO, Les Amis de Chamarel, with the aim of selling the organic vegetables to the Tables D'Hotes of Chamarel as well as inhabitants, hotels and general public. Community participation was an integral part of the proposal.

- Compost enrichment project
This project aims at investigating the most suitable enrichment technique at a low cost value for Municipal Solid Waste comports to produce ‘best nutrient content compost’ and ‘organic enriched compost’. The project is at its enrichment phase.

- Eco-campus Initiative
As part of the Eco-campus Initiative, the Department of Chemical and Environmental Engineering (Faculty of Engineering, University of Mauritius) initiated a project on institutional shredded paper/green waste composting. An earlier phase of the project involved composting of shredded paper with poultry litter. In the second phase, composting of grass clippings and shredded paper as compost feedstock has been investigated. The project is at its final stage.

Livestock wastes composting
Sobratee (2008) investigated the presence of *Salmonella* and the survival of coliforms during composting of confined animal feeding operations (CAFO)-derived wastes. She concluded that the temperature of composting is a technique of waste sanitisation, but *faecal enterococci* are more resistant to high temperature compared to *E. coli*.

Degradability of plastics in composting
The objective of this study was to assess the biodegradability of two types of plastics that have been manufactured in Mauritius from two different additives. It was concluded that after 45 days of composting one plastic had an average biodegradation of 19.3% and the other did not undergo any biodegradation. The rate of biodegradation for the reference material exceeded 70% at the end of the test, which was in accordance with values obtained for the biodegradability test according to ISO 14855 (1999). (Mohee and Unmar, 2007).
Biodegradation of pesticides during composting

The biological degradation of three chlorinated herbicides (atrazine, 2,4-D and picloram) were studied in an in-vessel composting system with green waste as feedstock (Jumnoodoo, Unpublished). Degradation of 2,4-D occurred within 10 days of composting whereas that of atrazine and picloram was associated with lag phases of 24 and 31 days respectively. The molecular structure and thus, persistency of the herbicides was a limitation to biodegradation during composting.

Climate change: composting as a mitigation strategy in Mauritius (2006)

CEDREFI, an NGO specialized in tackling climate change issues, has looked at the composting process as a mitigating strategy to deal with municipal solid wastes because of the capacity of compost to act as a carbon sink. Also, composting is the best solid waste option in mitigating greenhouse gas emissions. The project consisted in training the members of the NGO in composting the organic portion of municipal wastes, as well as demonstrating best composting practices in the backyard. As a result of the training, the 30 citizens who were involved therein have made successful attempts to compost wastes in their backyards.

Wastes recovery at community level (2007)

Composting the organics of Municipal Solid Waste at an individual level attracted interest from beneficiaries and training sessions were carried out to examine the potential of composting at community level with the group Mouvement Pour le Progrés de Roche Bois (MPRB). The compost produced was successful and growth of mustard seeds was demonstrated to compare the benefits of soil/compost mixes. The technical parameters behind the composting process were well explained to the community as well as the analytical tools in composting. This project is ongoing and training is being actively carried out on the proper use and application of compost for vegetable growing.

Composting in hotels

Demonstration of windrow set-ups were carried out in composting facilities at the following hotels: Lataniers Bleus, Heritage-Golf and Spa, Telfair and Movenpick as a means to divert biodegradable
wastes (green wastes, vegetables and fruits and cardboard) from landfill disposal. The gardening personnel were trained to monitor and manage the composting process. Successful composting was achieved at Lataniers Bleus, Heritage-Golf and Spa and Movenpick. The project is ongoing and expected to expand to other hotels.

National Productivity Competitiveness Council (NPCC)

The National Compost Plan is derived from the recommendations by the NPCC on the ‘Green Productivity Program’. A Central Composting Plan and Facility (CCPF) was proposed which will consider the whole process of wastes conversion to composts and in the development of the agro business sector. The objectives of the CCPF have been to produce a clean and ecologically beneficial alternative to inorganic fertilizers, provide a biodegradable product and to develop a proprietary manufacturing facility.

Composting at the Municipality of Curepipe

A study was initiated at the University of Mauritius to identify the composting potential of segregated organic wastes from the township of Curepipe. The project is ongoing.

5. Solid Waste Management in future

The quantity of solid waste in Mauritius is increasing year after year and the landfill is rapidly reaching to its saturation point. Hence, to ease the alarming situation, the landfill is being extended with the construction of Cell 6. However, for a better solid waste management, two major projects are near to completion: a composting plant and a waste-to-energy plant.

5.1 Composting Plant

Since the majority (more than 60%) of the waste disposed in the island are of organic in nature, setting up of a national composting plant has been proposed by the Solid Waste Recycling Co. Ltd. The facility is intended to process 300 tonnes of unsegregated solid waste per day, that is, 100,000 tonnes per year. This amount represents one-quarter of the total amount of waste being disposed at the
landfill site. The composting plant with the partnership of an Indian company, Excel Industries, will be sited at La Chaumière which is on the western part of the island and is about 16 kilometres from the capital and about 36 kilometres from the Mare Chicose landfill.

5.2 Waste-to-Energy Plant

A Waste-to-Energy (WTE) Plant has been proposed by Gamma Energy Ltd, a joint venture company established by Gamma-Civic and Covanta Energy with a capacity of 300,000 tonnes of solid wastes per year over 25 years of its operational life. The project site will be situated at La Chaumière, near the composting plant. The investment costs will be approximately MUR 6 billion (www.gammaenergy.mu, 2009).

In addition to domestic and commercial wastes from all parts of the island, the WTE Facility is designed to process tyre chips, wood waste, off-specification pharmaceuticals and classified documents except asbestos, inert construction waste or hazardous waste. Further, the Plant is intended to produce a 20 MW (net) of electricity which will be sold to Central Electricity Board, the national grid.

The bulk volume of wastes will be reduced by about 90% (Carl Bro Intelligent Solutions, 2004). The ash (bottom and fly) produced from the combustion process is intended to be stored in a Residue Storage Facility which will be adjacent to the WTE facility. Moreover, the slag or furnace bottom ash produced from combustion of MSW had been proposed to be re-used in the construction industry as sub-base material, structural fill and aggregate in asphalt (subject to environmental approvals).

Other benefits of the WTE facility are that it will be a source of tax revenue and a private sector investment that will preserve Government financial capital for other essential services and also, there will be a net reduction in greenhouse gas emissions associated with climate change.

6. Conclusion

The waste management system of Mauritius is not a fully integrated one. Waste generation rate is increasing year after year while the sole landfill of the country will be filled in a very near future. Since Mauritius is a small island and lack of space is a problem, better waste management system is,
therefore, a requirement.
Several studies have been made in the past in relation to solid waste management. Most of them concluded that there is a wide scope of composting due to the high organic content (more than 60%) and an appropriate moisture content of around 50%. Several composting studies and successful composting activities have been recorded in Mauritius. These endeavours to support sustainable agriculture practices and manage the organic portion of solid waste have shown that composting in Mauritius economically viable and thus, need to be encouraged at all community level. The level of recycling of solid waste in Mauritius seems to be very limited, despite the growth of solid waste generation. Only about 9% of paper, 3% of plastics and 31% of textiles are recycled (National Programme on SCP for Mauritius (2008-2013), 2008). From the reviews of recycling plants, there are economic, technical, social, legislative, and informative barriers to the development of recycling activities. Some recycling plants are not fully integrated due to high investment costs, this explain why they export for further processing. A number of recycling facilities seems to be in short supply of workforce while others complain of unavailability of wastes due to the inefficiency of the collection system itself and high collection costs. Many plants report that lack of incentives from the government together with insufficient information and participation of the public holds back the growth of recycling. Some recycling plants report that there is low demand of recycled goods while others fear the risks of not meeting the demand of recycled products due to unavailability of raw materials.
As a result of the disturbing conditions of solid waste management, two future plans at the national level are in the implementation phase, a composting plant and a waste-to-energy plant, which both will process the annual generation of 400,000 tonnes of waste producing compost and electrical energy respectively.
B. EDUCATIONAL CAPACITY

1. Introduction

1968 was the year when the University of Mauritius (UoM) became functional, starting with the College of Agriculture. Today, to meet the necessities of the country, the University has progressively grown into an institution of excellence comprising of five Faculties – Agriculture, Engineering, Law & Management, Social Studies & Humanities, and Science. All the Faculties are engaged not only in teaching, but also, in research and consultancy. In addition to the conventional face-to-face approach of teaching, the University of Mauritius values its standard of teaching through the Innovative Learning Technologies such as distance education and online learning.

Internationally recognised programmes are offered at the University and include quality assurance mechanisms like external examiner system and connect with reputed Universities worldwide. The Quality Assurance Office assists the University in preserving and enhancing the quality of all its activities.

University of Mauritius has nigh on 1000 staff members, academic and non-academic. The student populace is about 7000, with some 70 international students primarily coming from regions like Africa, India, and Seychelles; and a handful from Europe. Most of the international students select the University of Mauritius to spend a semester abroad. The University of Mauritius and overseas universities have established numerous exchange agreements.

Geographically, the University is sited at Réduit, a small zone in the middle of businesses, major cities and other educational institutions of Mauritius. Réduit is recognised for its historical buildings and its green environment and has now become the educational hub of the island.

The University constantly makes an effort to provide the finest environment and facilities to its students. University of Mauritius has a role of strategic partner of the public and private sectors in domains of higher education, research and service to the community. The University has a well-resourced Library, and moreover, it houses the SYFED Centre, which provides access to mainly Francophone scientific, technical and literary databases.
The Admissions and Student Records Office is the main point of contact for all students of the University, including the international students. A Sports Unit on campus organises various indoor and outdoor sports activities. The University has a new multi-purpose gymnasium complex. The University Cafeteria and food outlets around the campus serve both vegetarian and non-vegetarian food at affordable prices. The University is non-residential. However, assistance is given to international students in finding a suitable lodging in the vicinity of the campus.

2. Faculties and Centres

2.1 Faculties

The University has five faculties: Faculty of Engineering, Faculty of Law & Management, Faculty of Science, Faculty of Social Studies & Humanities.

- Faculty of Agriculture

The Faculty of Agriculture, originally founded as the School of Agriculture in 1914, plays a vital role in providing trained human resources for the public and private sectors in Mauritius as well as in the region for the development of agriculture and related fields. It is a continuing challenge to produce high calibre graduates to meet the changing needs of the agricultural sector for this millennium.

The Faculty of Agriculture consists of around 100 members of staff, administrative staff, farm & campus grounds unit staff, academics and technical staff grouped into two departments, namely Agricultural Production & Systems and Agricultural & Food Science. Agriculture being a multidisciplinary field, the Faculty has expertise in a wide range of agricultural and related areas including plant, soil, animal and food sciences, plant and animal production, agricultural biotechnology, extension and agricultural management.

The Faculty has well equipped analytical laboratories certified by the Board of Agricultural Chemists of the Republic of Mauritius, for teaching and research. It also has a fully equipped computer laboratory.
All computers are connected to the University network and to the Internet giving access to electronic mail and the World Wide Web. The Faculty also has a 21-acre farm, including a nursery, a greenhouse, a crop museum, plant and animal laboratories, and an animal production unit, for hands-on practical training and for student and staff research. The Farm provides various support services including the maintenance of the campus grounds.

- **Faculty of Engineering**

Since its creation in 1968, the Faculty of Engineering has fulfilled its initial mission of training technicians and engineers, in various fields, who have contributed significantly in the first phase of the industrial development of Mauritius. Up to June 1999, about 600 students were awarded degrees in engineering, computer science and textile technology and over 1200 were awarded diplomas/certificates.

With the experience of the past years, the Faculty has adopted a multidisciplinary approach to ensure that University of Mauritius graduates possess skills relevant to, and up-to-date with, the world of professional practice. Therefore, in order to cater for new market trends, the core programmes have been reviewed to include new options such as Chemical and Environmental Engineering, Civil Engineering with the Built Environment, Civil Engineering with Environmental Engineering, Electronic and Communication Engineering, Manufacturing Engineering and Mechatronics.

The new degree programmes also incorporate modules in management, economics, accounting, information technology and communication skills with the aim of providing future engineers with the necessary tools in the discharge of their duties.

Departments include: Chemical & environmental, Civil Engineering, Computer Science & Engineering, Electrical & Electronic, Mechanical & Production Engineering, and Textile Technology.

- **Faculty of Law and Management**

In line with the mission and objectives of the University as outlined in its Strategic Plan (1999-2004), the Faculty of Law & Management, during the academic year 2000-2001, strengthened its policy of
increased access to tertiary education for all categories of students. The programmes on offer continued to cater for the needs of school leavers. In addition, special efforts were made with regards to mature students already in full time employment and who at the same time, desire to improve their skills and qualifications. The Faculty responds positively to requests from the public sector to offer programmes aimed at civil servants; the Diploma in Management with specialization in Human Resource Management mounted at the request of the Ministry of Civil Service Affairs and Administrative Reforms testifies to this. Mention must also be made of the BSc (Hons) Police Studies to which a second cohort of Police Officers was admitted. Departments are Department of Finance & Accounting, Department of Law and Department of Management.

- **Faculty of Science**

With the opportune creation of the Faculty of Science in February 1989 of the University of Mauritius, Government had rightly foreseen our present need for graduates adaptable to a wide range of jobs and able to identify new areas of advance. The Faculty is now a major facility for the educational and research development of the country.

The academic staff of the Faculty are distributed in the Departments of Biological Sciences, Chemistry, Mathematics, Physics, Health & Medical Sciences, and the SSR Centre for Medical Studies and Research. The staff profile of the Faculty along with the main research areas and departmental links are given in the centre-page.

- **Faculty of Social Sciences & Humanities**

The Faculty of Social Studies & Humanities was set up in September 1992 as a result of the restructuration of the School of Law, Management and Social Studies. The courses offered by the FOSSH cover a wide range of fields which include Economics, Statistics, Communication Studies, Library Studies, Sociology, Social Work, Languages (English, French, Hindi) and History. Graduates work in the financial sector (banking, insurance, etc), in the teaching profession, in welfare-oriented
services (public and NGOs), in administrative services, in media (e.g. journalism), in industrial and public relations.

Departments are: Economics & Statistics, English Studies, French Studies, History & Political Science, Social Studies.

2.2 Centres

- **Centre for Information Technology and Systems (CITS)**

The CITS of the University of Mauritius seeks to be a leading edge, high quality provider of computer-based network services, Management Information Systems and IT certification courses in support of UoM’s academic, research and public service missions through strong partnerships and informed leadership. The CITS is organised in two departments, namely Management Information System (MIS) and IT Services (ITS).

- **Virtual Centre for Innovative Learning Technologies (VCILT)**

The VCILT supports academics and tutors with online module development, assists them with technology and academic management tools for the conception, presentation and networking of their contents and activities. The VCILT is involved in supervision of organisational reorganisation based on ICT integration.

A collection of projects conceptualised and developed since the creation of VCILT in 2001. These projects cover the wide range of expertise of the centre, namely:

6. instructional design
7. online content development and training
8. creative multimedia design & development
9. website production
10. earning management systems
11. developmental work

- **Centre for Professional Development and Lifelong Learning**
The Centre for Professional Development and Lifelong Learning (CPDL) was set up in January 1993 to facilitate the implementation of Distance Education (DE) at the University of Mauritius (UoM), with the objective of improving quality and increasing enrolment at UoM.

The CPDL operates under the umbrella of the Lifelong Learning Cluster (LLC) which involves the other Centres of the UoM (the Virtual Centre for Innovative Learning Technologies and the Centre for Information Technology and Systems) and taps from a database of academics in different fields, from Engineering to Management, Communication and Science, to design and deliver tailor-made programmes. In fact, the CPDL’s mandate is to offer training programmes that are designed in consultation with stakeholders, using flexible modes of delivery that range from face to face lectures and seminars, print-based package to online/blended learning.

- **Consultancy & Contract Research Centre (CCRC)**

 The Consultancy and Contract Research Centre (CCRC) was launched in August 1998 under the aegis of the Pro-Vice-Chancellor for Research, Consultancy & Innovation. The CCRC is headed by a Director and comprises a lean staff/structure, supported by Research Assistants dedicated to major projects. The CCRC aims to help the University of Mauritius become a world class repository of research-generated knowledge for enhanced national competitiveness. It's mission is to provide expert Consultancy and Contract Research services to local and regional clients so as to contribute to the socio-economic development of Mauritius within the global economy.

ACTIVITIES

The CCRC is responsible for the management of:

(a) Consultancy & Contract Research Projects

The CCRC coordinates all Consultancy and Contract Research projects between the University and Industry, government and other stakeholders, from pre-award state until project wrap-up. The CCRC is involved in pre-award contract negotiation in the finalization of Agreements in collaboration with Registrar’s office for legal clearance, project management of research during
implementation, management of Intellectual Property Rights (IPR) generated by research, licensing and technology transfer of research output, and finally project wrap-up and closure.

(b) Intellectual Property Rights (IPR)

The CCRC manages Intellectual Property Rights (IPR) generated by University research, licensing and technology transfer. The CCRC is also involved in other projects, which are not primarily considered as Consultancy or Contract Research projects such as the provision of IP information, access to patent databases, and technical assistance to national Innovation initiatives.

(c) Marketing of University Expertise to manage Consultancy & Contract Research projects

- Brochure on CCRC

The CCRC participates in various national calls for Proposals. In the year 2006-2007, the University has registered itself as a service provider with the European Commission to assist the commission’s services for tasks in connection with the FP7 (7th Framework Programme) for Research and Technological Development. The CCRC has also submitted various bids under open tendering launched on a regional basis, by COMESA, SADC and European Union.

- Centre for Applied Social Research

The Centre for Applied Social Research (CASR), a joint initiative of the University of Mauritius and the Mauritius Research Council, was set up in 2001 to undertake research in areas pertinent to the development of Mauritius embracing academic, public policy and economic objectives. CASR maintains objectivity, intellectual independence and integrity while measuring and analyzing socio-economic changes in Mauritius. It promotes the development of research based socio-economic policy and the stimulation of a culture of knowledge. All research undertaken is subject to rigorous social measurement and analysis techniques.

The flagship study of the centre is the Mauritius Social Attitudes Survey which provides barometric measures on such issues as financial well-being and stability, access to financial services, employment, health, education, inequality, family dynamics, local environment, social network and capital and
other socio-demographic and economic variables. The first Social Attitudes Study was completed in 2002 and the next, for 2005, is currently under preparation.

- Observatoire des Droits de l'Enfant de la Region de l'Ocean Indien (ODEROI)

The Observatoire des Droits de L’Enfant de la Region de l’Ocean Indien (ODEROI) was launched in 2004 by the Commission de l’Ocean Indien (COI) and UNICEF, in partnership with the University of Mauritius. As an observatory of the Indian Ocean Report, ODEROI is mandated to report on Child’s Rights and Wellbeing in the five countries of the region, namely, Comoros, Madagascar, Mauritius, Reunion and Seychelles. The grouping of the Indian Ocean countries on a regional basis is to develop common tools for monitoring and statistical analysis, share good practices and to create a new dynamism in the implementation of the rights of the child.

Its main functions are to:

- generate knowledge and innovative research/development studies headlights, facilitate research based on the child and prepare specific studies;
- promote exchange programs and development strategies for academics and students;
- be the depositary of any existing knowledge relating to children/youth and facilitate its dissemination and its public availability (database/web site); and
- promote advocacy based on evidence and facts in the Indian Ocean region
3. Library

The University of Mauritius Library has been set up with the objective to provide the necessary bibliographic support as well as the services and facilities to satisfy the information needs of its various categories of users.

Subject Areas

Library materials relating to all the different subjects taught at the different faculties are available for consultation or loan. As a partial depository of United Nations and its agencies’ publications, the Library also offers an important source of information for consultation.

Facilities

- Loans (issues, returns, renewals and reservations)
- Reference and consultation
- Inter library loans (national and international)
- Audiovisual facilities
- Photocopy services (local and abroad)
- Online library search on intranet

Library Regulations

Term Time

Week days 8.00 a.m – 8.00 p.m
Saturday 8.00 a.m – 1.00 p.m

Vacation Period

Weekdays 8.00 a.m – 5.30 p.m
Saturday 8.00 a.m – Noon
Facilities to order papers are offered by the Centre d'Information, de Formation, d'Orientatation et de Documentation (CIFOD).

4. Quality Assurance

Quality Assurance in Higher Education is becoming more and more important in this modern and important era of globalisation. Terms such as standards, recognition, accreditation, fitness for purpose or quality are becoming key words. There is a growing consensus in the country that quality assurance in higher education is of real importance, relevance and value.

The University of Mauritius has committed itself to continuous improvement and quality management as indicated in its strategic objectives as follows:

4. **Ensuring Relevance** - interact proactively with the world of work and the community to cater for emergent requirements while inculcating a wider sense of belonging to the University.

5. **Ensuring Quality of Teaching and Learning** - enhance existing provisions for continuous improvement in the quality of teaching and learning, and work progressively towards the implementation of best practice.

6. **Strengthen Research** - develop further the University's research capacity and research management plan.

7. **Internationalise the University** - Improve the International standing of the University and expand its role and programme of activities.

These strategic objectives are reflected to a large extent in the following specific approaches to quality management that are currently being adopted:

- The gradual integration of quality improvement processes throughout the University.
- The enhancement of the University of Mauritius quality system.
• Specific approaches to quality assurance of core activities, with initial focus on Teaching and Learning.
• Improvement of the University’s overall management practices.

5. Chemical & Environmental Engineering Department

The Master's programme will be hosted by the Department of Chemical & Environmental Engineering, under the Faculty of Engineering.

5.1 Overview of Department

Chemical Engineering is a broad based discipline which requires a knowledge of mathematics, science, chemistry to solve problems in industries. With their skills and experience, graduates can work in the fields of chemical, environmental and energy engineering and as scientific/technical officers in a wide range of industries. They can also offer consultancy services in related engineering projects. The core of the programme is focused on Chemical engineering principles and the current programme leaves students with the choice to specialize in two areas at the end of their fourth year of studies, they can specialize in either Environmental or Renewable Energy engineering. Students can pursue further studies in fields related to Chemical engineering such as Biochemical engineering, environmental or energy engineering. They can also conduct MPhil/PhD research in a field of their choice associated to the undergraduate degree. At the end of the undergraduate degree, a multitude of job opportunities exist. Chemical engineers can aspire to work in scientific, research and development services.

Our BEng programme has been designed to be help meet the future needs of the Mauritian economy and to produce graduates who have the personal and intellectual qualities to be successful in their chosen careers. By the end of the course our graduates should be able to:

• have a systematic knowledge of Chemical Engineering including Environmental Engineering
• work in the field of Chemical and Environmental Engineering

• apply their technical knowledge and intellect to solve Chemical and Environmental Engineering problems

• use transferable skills to communicate effectively and work as part of a team

• take responsibility for their continuing personal and professional development

5.2 Laboratory facilities at the Department

The Chemical and Environmental Engineering Department provides laboratory facilities to students and for research purposes. The Department accommodates four laboratories, namely: Sugar Tech Lab, Composting Facility, Thermo Lab and Wastewater Lab.

The Sugar Tech Lab is well-equipped for extensive investigations in a wide variety of environmental and sugar fields. The laboratory houses apparatus such as oven, furnace, electrical conductivity metre, pH metre, sieve shaker and bomb calorimetre to determine moisture content, ash and volatile content, electrical conductivity, pH, particle size and energy content respectively. The laboratory also provides facilities for general analysis such as titration, heating, drying among others.

The Composting Facility enables the setting up of windrow as well as in-vessel composting. Physical and chemical parameters can be monitored like temperature and respiration test, together with quality determination tests such as germination index, compost maturity index, porosity and water-holding capacity on composts.

The Wastewater Lab of the Department is engaged in the analyses of wastewater and leachate. Tests like Biological Oxygen Demand, Chemical Oxygen Demand, Sulphate, and Nitrate among others can be performed. Moreover, the Wastewater Lab has an incubator, and a landfill gas analyser for methane and carbon dioxide is on order.
The Thermodynamic Lab is furnished with specialised equipment like fluidised bed heat transfer unit, air and water heat pump, radiation apparatus, steam to water heat exchanger and concentric tube heat exchanger, where analysis on areas such as thermodynamics together with heat and mass transfer can be made.

5.3 Modes of teaching

To ensure that lecturers follow the constructivist learning and teaching approach, each year the University of Mauritius dispenses teaching and learning courses by professionals to new lecturers. The two modules that are taught are from the Postgraduate Certificate in Teaching and Learning in Higher Education:

- TAL 5010: Academic Induction
- TAL 5011: Knowledge Structure

Methods of teaching used at the University include a combination of different techniques, of which some of them are described in the table below here.

Table 1: Teaching strategies and aids

<table>
<thead>
<tr>
<th>Classroom sessions</th>
<th>Teaching strategy</th>
<th>Teaching technique</th>
<th>Aids used</th>
<th>Facilitation style</th>
</tr>
</thead>
</table>
| | Face to face lectures| • Explanation
| | | • Notes taking
| | | • Questions & discussion
| | | • Slide projection
| | Assignments | • Group work
| | Tutorials | • Group discussion
| | Case-studies | • Reflection on problems
| | | • Peer sharing
| | | • Reference to books
| | | • Internet search
| | | - Issue of tutorial sheet
| | | - Correction on whiteboard

- White board
- Handouts
- Overhead projector
- Issue of tutorial sheet
- Correction on whiteboard
CODWAP

<table>
<thead>
<tr>
<th>Laboratory sessions</th>
<th>Demonstration of composting technique</th>
<th>Explanation with demonstration Questions & answers (dialogue)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Laboratory equipment</td>
<td>Visual and Auditory</td>
</tr>
<tr>
<td>Practical experiments by students</td>
<td>Hands-on practical Observations Active participation</td>
<td>- Lab equipment</td>
</tr>
</tbody>
</table>

References

http://www.gov.mu/portal/site/cso/menuitem.dee225f644ffe2aa338852f8a0208a0c/?content_id=52160fa67278c010VgnVCM1000000a04a8c0RCRD

Available from: http://www.mauritiusdelight.com/MauriL.htm

Ministry of Environment and NDU, About the Ministry [Accessed on 22/06/2009]
Available from: http://www.gov.mu/portal/site/menvsite

Ministry of Public Infrastructure, Land Transport & Shipping, Short History about Mauritius [Accessed on 10/07/2009]
Available from: http://www.gov.mu/portal/site/mpisite/menuitem.443567d2865ca3368b1dd210a0208a0c/

Moka Flacq District Council, Health Department [Accessed on 02/07/2009]
Available from: http://www.mfdc.orange.mu/

Municipality of Beau Bassin/Rose Hill, Health Department [Accessed on 01/07/2009]
Available from: http://www.bbrh.org/

Municipality of Curepipe, Health Department [Accessed on 02/07/2009]
Available from: http://www.curepipe.org/

Municipality of Port Louis, Health Department [Accessed on 01/07/2009]
Available from: http://mpl.intnet.mu/home.htm

Municipality of Quatre Bornes, Health Department [Accessed on 01/07/2009]
Available from: http://www.qb.mu/

Municipality of Vacoas/Phoenix, Health Department [Accessed on 01/07/2009]
Available from: http://www.vacoasphoenix.org/about.php

Available from: http://www.incinerationmauritius.com/
UNDP, Map of Mauritius [Accessed on 10/07/2009]
Available from: http://un.intnet.mu/images1/map_mauritius-lrg.gif
US Department of State, Mauritius [Accessed on 02/07/2009]
Available from: http://www.state.gov/r/pa/ei/bgn/2833.htm
Available from: http://www.gammaenergy.mu/index.php?item=1&lang=1
ANNEX I: Brief on composting projects

Demonstration project at NFYFC

The NFYFC is the largest NGO of planters in Mauritius with more than 2000 planters, affiliated to its national centre at Belle Mare. Recognizing the need to inculcate sustainable agricultural practices among its beneficiaries, it has encompassed composting as the main means of producing ‘organic fertilisers’. This project has been conducted at several levels, namely:

- Composting of chicken wastes and bagasse using windrow technology on a large-scale basis involving 1-3 tons of raw materials, in view of training young farmers. This method has been used to demonstrate the technical parameters as well as the role of aeration in maintaining a proper compost pile. Showcases using wastes from several sources, animal, household and hotel wastes were demonstrated by using passive windrow and the forced aerated systems. Advantages of each system were discussed with the planters.

- Composting of chicken wastes and bagasse using the technique of the rotary drum composters by 30 families. These families were trained in compost making and the compost produced, was used in their kitchen gardens for growing vegetables. Many have reported increased plant yield, and better quality vegetables with the regular use of composts.

Both large-scale and individual projects had proved to be successful. About 2.5 tonnes of raw materials produced around one tonne of finished compost. The compost yield was about 40% on a mass basis. Currently, NFYFC sells its compost at Rs20/ a packet of 2kg. These prices are marketed prices for small packets and if the compost is to be purchased in bulk, the maximum value is Rs10/kg.

Domestic wastes recycling by regional women associations (2006-2007)

There are around 1300 women associations around the island, regrouped in four regional associations. Compost projects have been developed in view of producing compost for sale and selling ‘compost produced vegetables’. A Train the Trainers’ project in Compost Making has been completed
with 100 women from the four regional associations in Mauritius namely Vacoas, Union Park, Baie du Tombeau and Quartier Militaire. The women had expressed interest in the composting projects as part of an entrepreneurship scheme. The activities consisted in characterising the organic portion of municipal solid wastes, compost making at household level and utilisation of compost in the vegetable and fruit growing activities of the communities. Each trainer had the responsibility of training around 30 persons from her own association. Because of the large number of women who had to be trained, a ‘train’ the trainers approach was used, materials developed such as guide and a manual as well as the training sessions was conducted on site in each of the four regions. In total, around 2000 women were trained in compost making and the compost sold to promote entrepreneurship. This project has led to a *National Empowerment Project* being developed for housewives to develop small enterprises out of compost making, compost marketing and compost and selling.

Composting of green wastes with and without bioculum

A request was made by Solid Waste recycling Ltd to analyse the effect of bioculum (a composting additive) on the composting of green wastes (green leaves and branches, grass, brown leaves and branches, paper and chicken wastes). The study involved two rotary drum composters, each of 200 L capacity. One drum consisted of green wastes only (denoted by G), while the other one consisted of green wastes mixed with bioculum (denoted by GB). A sample of the bioculum was diluted with water and sprayed on the material. There was a rapid initial decomposition rate of the most readily available biodegradable organic matter for the first 5 days in GB as compared to G after which high cooling rates caused the temperature to drop rapidly. It was noted that a temperature increase of only 1.2°C had taken place for this mix (GB) since all degradable organic matter had been consumed by the microbial flora.

UNDP GEF/Small Grants Programme

Composting projects in Rodrigues

Knowledge in science and technology of composting, has been put into practice through the initiation of four composting projects in Rodrigues Island (currently under progress), with the collaboration of
UNDPSGP/GEF. These projects are the developing sustainable agricultural practices in Rodrigues through capacity building in composting, the sustainable animal waste management in Rodrigues, the pilot demonstration facility for windrow composting of agricultural wastes and production of biovegetables and the domestic solid waste recycling at community level in Rodrigues.

Through the development of sustainable agricultural technologies with women in Rodrigues, a pilot study has been conducted in 2001, using a participatory approach with women farmers towards composting technology development and extension processes. The aim of the project was to determine whether sustainable livelihood practices of small-scale community based farms could be improved by the use of environmentally friendly technologies, and to inculcate the use of compost as an alternative to fertilizers. The study was undertaken in two phases, namely: (1) explanatory and training phase on the basic principles of composting, as well as, (2) demonstration of composting set-up and monitoring in rotary drum composter and windrow composting. Actually, there are around 100 farmers who are using rotary composters to produce compost in Rodrigues. The results obtained from studies carried out in composting in Rodrigues have shown that composting of wastes (animal wastes and solid wastes) is feasible. Around 85 farmers of Rivière Banane in Rodrigues have since then been using only compost and other organic amendments in their agricultural and crop growing activities. The use of compost has been the right strategy to market their products during weekly markets in Rodrigues.

In 2007, a manual “Trainer’s Package on Composting” has been developed to raise awareness amongst Rodriguans on the benefits of composting and to encourage farmers to compost organic wastes. This package has been used to train future trainers, who wanted to gain composting expertise and assist in educating farmers on composting practices and technology.

In view of the project ‘Sustainable Animal Waste Management in Rodrigues’, composting processes units involving animal wastes composting were set up at Marechal with the collaboration of Association des Fermiers de Maréchal, Citron et Chateau des Fleurs.

A pilot windrow composting facility was constructed at Tammes for agricultural wastes to be used for the production of biovegetables. Furthermore, composting set-ups were carried out with members of
Association des Planteurs de Petit Gabriel & Association des Planteurs de Mourouk under the project ‘Domestic solid waste recycling at community level in Rodrigues’.

Horse manure composting

Les Mariannes Cooperative, medium-sized NGO, is engaged in the production of pineapples and ginger, using organic fertilizer. It also functions as a waste carrier for horse manure where around 150 tons are generated per week. The physical and chemical characteristics of the horse wastes were first determined and a design of the ‘horse waste composting facility’ was carried out, from waste reception, blending, composting in windrow, maturing and compost quality testing to the sales of compost. The compost produced is currently being used on the farms by the members of the cooperative society and is also being sold to community planters. In this way, horse manure disposal is being carried out in a safe and sound manner, while also providing job opportunities.

Organic farming at Chamarel

The main objective of project was to initiate organic farming practices on 1.15 ha of land belonging to a Non Governmental Organization, Les Amis de Chamarel, with the aim of selling the organic vegetables to the Tables D'Hotes of Chamarel as well as inhabitants, hotels and general public. Community participation was an integral part of the proposal. This project was undertaken by the NGO through consultation and collaboration with all stakeholders.

Compost enrichment project

The aim of the study was to investigate the most appropriate enrichment technique at a low cost value for MSW composts in view to produce the ‘best nutrient content compost’ and ‘organic enriched compost. Three compost mixes consisting of MSW, MSW with poultry litter and MSW with urea, were set up in rotary drums. The comports were monitored for physicochemical parameters and nutrient value (NPK). Nutrient-rich comports were prepared using NPK fertilizer, urea, rock phosphate and microbial consortium additive. Project is at the enrichment stage.
Ecocampus initiative

As part of the Eco-campus Initiative, the Department of Chemical and Environmental Engineering (Faculty of Engineering, University of Mauritius) initiated a project on institutional shredded paper/green waste composting. An earlier phase of the project involved composting of shredded paper with poultry litter. In the second phase, composting of grass clippings and shredded paper as compost feedstocks have been investigated. Composts derived from yard waste/grass cuttings possess high horticultural value. The following faculties and departments participated in the collection of shredded confidential paper: Science, Law and Management, Engineering, Central Administration and Finance department. Fresh clippings (2-5 cm) of Bermuda grass (*Cynodon dactylon* L.), gathered from the University campus, were used as amendment to compost the shredded paper. The project is at its final stage.

Livestock wastes composting

The science of composting was interpreted as an environmentally-sound treatment option for confined animal feeding operations (CAFO)-derived wastes, in view of stabilisation and hygienisation. A 110-day systematic composting study was investigated by Sobratee (2008) for the presence of *Salmonella* and the survival of total coliforms (TC), faecal coliforms (FC), *Escherichia coli* (EC) and *faecal enterococci* (FE) in three experimental windrows consisting of Spent Broiler Litter/bagasse mixture in a close-sided roofed facility. \log_{10} reductions of -6.98, -8.03, -8.18 and -5.96 occurred in TC, FC, *E. coli* and FE concentrations respectively. Mathematical equations (Levenberg-Marquardt Algorithm) showed that FE is more resistant to high temperature compared to *E. coli*. Temperature histories revealed hygienisation attainment.

Degradability of plastics in composting

The objective of this study was to assess the biodegradability of two types of plastics that have been manufactured in Mauritius from two different additives, namely: Willow Ridge Plastics – PDQ-H additive (Plastic A) and Ecosafe Plastic – Totally Degradable Plastic Additive (TDPA) (Plastic B) (Mohee and Unmar, 2007). After 45 days, the average biodegradation of Plastic A attained 19.3%, while Plastic B did not undergo any biodegradation. The rate of biodegradation for the reference material
exceeded 70% at the end of the test, which was in accordance with values obtained for the biodegradability test according to ISO 14855 (1999).

Biodegradation of pesticides during composting

The biological degradation of three chlorinated herbicides (atrazine, 2,4-D and picloram) were studied in an in-vessel composting system with green waste as feedstock (Jumnoodoo, Unpublished). Degradation of 2,4-D occurred within 10 days of composting whereas that of atrazine and picloram was associated with lag phases of 24 and 31 days respectively. The molecular structure and thus persistency of the herbicides was a limitation to biodegradation during composting.

Climate change: composting as a mitigating strategy in Mauritius (2006)

CEDREFI, an NGO specialized in tackling climate change issues, has looked at the composting process as a mitigating strategy to deal with municipal solid wastes because of the capacity of compost to act as a carbon sink. Also, composting is the best solid waste option in mitigating GHG emissions. The project consisted in training the members of the NGO in composting the organic portion of municipal wastes, as well as demonstrating best composting practices in the backyard. As a result of the training, the 30 citizens who were involved therein have made successful attempts to compost wastes in their backyards.

Wastes recovery at community level (2007)

The Mouvement Pour le Progrés de Roche Bois (MPRB) was the first group of people on the island to have proposed the sorting of municipal solid wastes into paper, plastics and organics. Composting the organics at an individual level attracted interest from beneficiaries and training sessions were carried out to examine the potential of composting at community level. The compost produced was successful and growth of mustard seeds was demonstrated to compare the benefits of soil/compost mixes. The technical parameters behind the composting process were well explained to the community as well as the analytical tools in composting. This project is ongoing and training is being actively carried out on the proper use and application of compost for vegetable growing.
Composting in hotels

Demonstration of windrow set-ups were carried out in composting facilities at the following hotels: Lataniers Bleus, Heritage-Golf and Spa, Telfair and Movenpick as a means to divert biodegradable wastes (green wastes, vegetables and fruits and cardboard) from landfill disposal. The gardening personnel was trained to monitor and manage the composting process. Successful composting was achieved at Lataniers Bleus, Heritage-Golf and Spa and Movenpick. The project is ongoing and expected to expand to other hotels.

NPCC

The National Compost Plan emanates from the recommendations of the ‘Green Productivity Program’ implemented by the NPCC in collaboration with the EMC center, India. It was proposed to develop a central composting plan and facility which will consider the whole process of wastes conversion to composts, enrichment of compost to homogenize the product for the production of organic/bio products and the sale/export of these products, in the development of the agro business sector. The national compost plan has taken into consideration all these elements from wastes treatment to bio vegetables/fruits production. The objectives of the CCDF have been to produce a clean and ecologically beneficial alternative to inorganic fertilizers, provide a biodegradable product and to develop a proprietary manufacturing facility.

Composting at Municipality of Curepipe

In Curepipe (with a total of 82000 inhabitants), there is already a sorting and separate waste collection of garden wastes, plastic bottles, paper, aluminium cans and mixed wastes on a weekly basis. A study was initiated at the University of Mauritius to identify the composting potential of segregated organic wastes from the Municipality of Curepipe. The project is ongoing.
ANNEX II: Principal Officers of the University

Pro-Chancellor and Chairman of Council
Professor S Jugessur

Vice-Chancellor & Chairman of Senate
Professor I. Fagoonee

Pro-Vice-Chancellor (Research, Consultancy & Innovation)
Professor Soonil Rughooputh

Pro-Vice-Chancellor (Teaching & Learning)
Professor Ameenah Gurib-Fakim

Registrar
Mrs S R Issur-Goorah

Budget Director
Mrs K. C. Bholah

Chief Librarian
Mr I. Dassayne

Deans of Faculties

- **Agriculture**
 - Associate Professor D. Puchooa
- **Engineering**
 - Professor R Mohee
- **Law & Management**
 - Associate Professor T D Juwaheer
- **Faculty of Science**
 - Professor Anwar Hussein Subratty
- **Social Studies & Humanities**
 - Professor S K Sobhee
ANNEX III: Strategic Plan of the University of Mauritius, 2006 - 2015

[Strategic Direction 1: Knowledge Creation]

Goal No 1: Redynamise Pure & Applied Research and Development

Rationale:
Research and consultancy output has to be enhanced to meet the challenges of becoming a world-class International University with strong collaborative links with industry. As research provides an education that is informed by leading-edge concepts, the University envisages bringing a paradigm shift towards fostering a positive research climate on the campus by restructuring its research policy, framework and infrastructure.

Strategies
- Encourage team research and multidisciplinary collaboration.
- Create an Excellence Park englobing multidisciplinary research theme
- Streamline the operations of the regulatory and administrative procedures that govern and support the UoM research enterprise
- Invest in collaborative research projects with industry to ensure relevance to local challenges and to develop intellectual advances and resources
- Provide incentives for engaging in research
 2. Reduce teaching and administrative load to active researchers
 3. Increase and diversify budget and improve research infrastructure
 4. Introduce research induction programmes and mentoring schemes
 5. Better recognition for publications in reputable leading journals
 6. Sustain funding for research demonstrable outputs
 7. Recognising and rewarding outstanding research performance
- Encourage patenting for breakthrough research output
- Create and maintain an e-database of research output and promote dissemination
- Encourage staff to seek diverse funding to support their research activities
- Increase MPhil/PhD student enrolment and output.

Goal No 2: Act as Thinktank on National Issues

Rationale:
As a leading institution of the country having a high pool of intellectual resources and talents, the University will serve as a platform to raise public awareness and promote discussion of social, economic and political issues, and public policies. The University thinktank will draw on staff from specific disciplines to produce innovative ideas and discussions on current and future issues of national interest.

Strategies
- Update competence map to identify area(s) of expertise of staff and alumni
CODWAP

- Encourage initiatives for brainstorming on current and future national issues
- Ensure timely tackling and expedient dissemination of university’s critical reflections

[Strategic Direction 2: Knowledge Diffusion]

Goal No 1: Increase Student Access

Rationale:

Mauritius has a low tertiary enrolment rate compared to developed countries and developing countries in the South-East Asia and to be able to compete in this modern globalised world where great emphasis is placed on knowledge and skills, more opportunities must be provided to students who wish to benefit from tertiary education. The UoM will thus endeavour to explore various avenues to increase student access and provide quality education to benefit the largest number of students possible including underserved and lifelong learners while maintaining affordability.

Strategies

- Encourage adults to embark on part-time evening courses.
- Promote and provide innovative and multiple modes of delivery
- Develop new Programmes of Studies
- Improve physical infrastructure
- Extend Programmes of Studies beyond normal working hours
- Provide access to underserved students
- Decentralise the University in strategic geographical locations (antenne universitaire)

Goal No 2: Promote Emerging Sectors including Science & Technology

Rationale:

In order for the University to play a key role in the development of Mauritius towards a knowledge hub, the University will focus on science and technology and other key sectors and create synergies to promote the development of well-defined educational supports to contribute to the sustainable development of the national economy. The UoM aspires to provide assistance to sectors to increase their productivity and competitiveness; encourage and provide new expertise to accelerate the country’s participation in emerging regional and global opportunities.

Strategies

- Encourage diaspora to collaborate in UOM R&D
- Develop timely Programmes of Studies which are in consonance with the market demand
- Strengthen links with local and foreign institutions to be continuously updated on job market needs
- Promote active involvement of stakeholders from emerging sectors in UoM Advisory Committees
- Encourage UoM’s active participation in forums at other institutional and national levels
- Identify training needs in emerging sectors and provide appropriate academic staff development
- Promote excellence in learning and research in computing and medical and paramedical studies by setting up a School of Computing & a School of Medicine
- Promote foreign languages (Mandarin, Spanish, Portuguese, German)
Goal No 3: Inculcate Entrepreneurial Flair

Rationale:

In today’s global competitive environment, Mauritius is facing more and more difficulty in attracting foreign investors in some sectors of its economy, causing an adverse effect on its level of employment, which invariably affects its socio-economic conditions. Consequently, there is a need to better prepare our nationals for launching small and medium enterprises to contribute to national economic development. In this line, UoM intends to inculcate in its staff and students the spirit of entrepreneurship, and equip them with the appropriate managerial skills to unleash the entrepreneurial potential in each individual on campus.

Strategies

- Set up Research Trust and Private companies
- Set up incubation cells within the Excellence Park
- Develop Programmes of Studies and additional modules on entrepreneurship and small business management
- Enhance links with industry, the business sector and relevant institutions (business mentors)
- Start the University of Mauritius International Business School (UMIBS)

Goal No 4: Promote Lifelong Learning and Continuous Professional Development

Rationale:

Information and Knowledge, the competitive tools of the century, are growing at an exponential rate. All emerging countries face the growing need to upgrade, and re-equip their human capital, as the “shelf life” of acquired knowledge decreases. Provision of opportunities to the workforce to return periodically to education to acquire, learn to use, and re-learn the knowledge and skills needed throughout their professional and personal lives becomes a strategic necessity.

Strategies

- Strengthen the CPDL
- Identify and assess lifelong learning needs
- Design and Offer high quality occupational and professional development programmes
- Develop an Accreditation of Prior and Experiential Learning (APEL) tool

Goal No 5: Foster Innovative e-Learning Systems

Rationale:

Universities all over the world are under pressure to integrate technologies in their teaching and learning, in response to the urgent need to reduce delivery costs, increase access, improve the quality of learning materials and ensure relevance to meet the requirements of the new breed of learners of the 21st century in terms of independence, autonomy, flexibility and development of critical and reflective thinking. The learners are not only different; they have to learn in new and different ways to secure and maintain their employability.

Finding innovative ways of delivering becomes a competitive necessity. E-learning as a novel approach assumes a pre-eminent position in any technological/computer mediated human interaction. It empowers the learners to manage their own learning and also provides an interactive experience that makes learning more exciting and appealing. UoM will have to further invest in e-learning to make tertiary education more flexible and accessible to the community.
Strategies

- Develop more e-programmes
- Enhance IT support & infrastructure
 - Provide e-learning tools to staff
 - Provide internet connection in lecture rooms
 - Provide laptops, PDAs to staff
 - Develop training programmes for both staff and student to enhance their e-skills
 - Equip the university with modern mechanisms for communication: wireless communication (Wi-Fi), computer networks, multimedia, content portals, search engines, electronic libraries, etc.
- Incorporate e-learning technology (web-enhanced, blended learning approaches) in Programmes of Studies to enhance student experience
- Provide a wider spectrum of options from asynchronous to synchronous learning
- Provide incentives for staff to develop and use innovative e-learning systems

[Strategic Direction 3: Investing in Resources]

Goal No 1: Recruit, Retain and Reward Quality People

Rationale:
The University of Mauritius recognises the value of its people and aspires to become an employer of choice. Presently, UoM faces a significant constraint in attracting and retaining highly qualified people. To ensure effective, sustainable and results-oriented development of the University and to achieve highest standards of academic excellence, UoM is committed to invest in and recognise competent and motivated staff.

Strategies

- Develop other avenues for incomes besides PRB.
- Set up new National UOM Award schemes: Gold medals, research grants, Best teacher recognition...
- Rationalise the Human Resources functions at the University
- Carry out an assessment of the utilisation of Human Resources at UoM
- Improve recruitment and retention strategies
- Encourage staff by providing performance related incentives/rewards scheme
- Create different paths for promotion
- Conduct induction training and mentoring for all new staff

Goal No 2: Ensure Sustainable Staff Professional Development

Rationale:
The main asset of the University of Mauritius is its human capital and competence, both academic and non-academic. The University should respond effectively to changing education and training needs, adapt to a rapidly shifting tertiary education landscape and adopt more flexible modes of organisation and operation. The UoM should hence provide adequate resources and environment to sustain professional staff development.

Strategies

- Enable interaction with foreign peers
- Allocate budget for professional development and in-house training
- Identify training needs of staff and initiate a proper staff development programme
- Set up systems for obtaining feedback on effectiveness of the training programmes
- Encourage multiskilling / multitasking

Goal No 3: Enrich Campus life experience

Rationale:

A vibrant and collegial atmosphere prevailing in a University campus contributes positively to the overall development of both students and staff. Therefore, to energize the University community, there is a need to provide a safe and inviting learning environment that encourages students to participate actively in both curricular and extracurricular activities that will better prepare them to face life challenges.

Strategies

- Arrange for the provision of transport facilities after working hours
- Construct Halls of residence for students and staff
- Introduce more extracurricular activities
- Reward student participation in extracurricular and recreational activities
- Set up a student counselling and students affairs office
- Enhance staff welfare
- Enhance provision of transferable skills on campus

Goal No 4: Increase Provision for State-of-the-Art Technologies

Rationale:

An integrated technology network is essential for an institution to fulfill the needs and expectations of its stakeholders in a productive manner. When used effectively, state-of-the-art technologies can promote research, collaborative learning, development of critical thinking, and assist in problem solving. It can also help learners explore the world beyond classroom and the university campus, by providing access to vast resources and information. In order to be more effective and efficient, UoM needs to invest in technology infrastructure that will allow all activities on campus to operate as a fully coordinated and integrated system.

Strategies

- Promote e-conferencing with foreign partners
- Develop a department-wise facilities and equipment master plan based on a needs assessment
- Explore the benefits of introducing the biometrics system
· Optimise resource utilisation through sharing of equipment and through internal and external partnerships
· Support the Excellence Park in its research enterprise
· Provide reliable access to information and network services on and off campus
· Enhance IT infrastructure to promote efficiency and productivity
· *Database Management System for administrative processes*

Goal No 5: Develop and Optimise Infrastructure

Rationale:
To ensure academic excellence and flourishment of learning and creative expression, a safe, healthy, supportive and stimulating environment and infrastructure, with good library, research and ICT facilities coupled with social and recreational activities, are needed. The UoM emphasises on efficient space and equipment utilisation and judicious acquisition that supports the University’s mission and enhance its quality of learning and educational outcomes.

Strategies
· Acquire new land and construct new buildings (library/parking space/residential/lecture rooms/canteen/labs)
· Upgrade research and teaching facilities
· *Subscribe to e-databases*
· *Create language labs*
· Develop and Optimise infrastructure use
· *Extension of lab hours*
· Provide more diverse sports facilities

Goal No 6: Explore sources of funding

Rationale:
In the light of ever-increasing financial constraints, the University has to explore, identify and evaluate new avenues for funding and to increase income generation from a variety of sources to provide support for its range of activities and innovative projects.

Strategies
· Enlist support of Alumni
· Set up Trusts and Foundations
· Generate revenue from the Excellence Park
· Generate more revenues from staff consultancy
· Seek support from potential benefactors
· *Enlist private sector support (creation of private chairs)*
· Increase enrolment of international students
· Provide more undergraduate/postgraduate fee-paying programmes of studies
· Encourage staff to seek research grants from external sources
[Strategic Direction 4: Quality Culture and Good Governance]

Goal No 1: Differentiate through Quality

Rationale:
During recent years, quality in higher education has gained increasing importance since students prefer to join the best universities that can offer excellent learning experience. Various universities in our region are offering medium to high quality tertiary education. In addition, employers tend to recruit high calibre graduates from reputable universities to strengthen their human capital so as to maintain their competitive edge. Therefore, in order to compete internationally and to be regarded as a university of choice for both local and international students, employers and other stakeholders, UoM must strive for excellence and make quality an inherent part of its culture.

Strategies
- Enhance transparency by publishing procedures, rules and regulations, and related decisions through the Internet
- Seek accreditation for Programmes of Studies from reputable international and professional bodies
- Develop and maintain effective and efficient academic and administrative processes across the University.
 - Rationalise the conduct of examination processes.
 - Adopt best practices for the core processes of the University.
 - Develop a structured approach to enhance the practice of quality.
 - Develop a complaint handling and monitoring system.
 - Provide continuous training for quality.
 - Enhance and sustain the quality system.
 - Generate, monitor and communicate performance indicators.
 - Promote and foster a quality culture on campus.
 - Promote effective leadership at all levels.
 - Promote a customer focus approach.
 - Foster team spirit and a structured approach in addressing and solving problems
 - Communicate information and decisions in a prompt and timely manner
 - Sustain quality awareness across the University.
 - Recognise and reward quality achievement.
 - Involve people in all quality initiatives.
 - Encourage commitment towards continuous improvement.
 - Encourage staff to adopt and live up to the core values
 - Improve efficiencies to maximise value for money
 - Optimise use of human, financial and material resources.
 - Emphasise right first time.
 - Review and enhance UoM’s finance and support services
- Enhance Public Relations and communication functions within and outside UoM
Goal No 2: Practice Corporate Social Responsibility

Rationale:
The UoM recognises the benefits of adopting Corporate Social Responsibility policies and practices to enhance its corporate image and reputation in the eyes of stakeholders and the community at large, and to inculcate responsible behaviour in all our staff and students and meet social, environmental and ethical standards.

Strategies
- Give credit for projects involving community development
- Design and promote codes of conduct related to human and ethical values and environmental issues
- Promote a culture of good governance, transparency, strong accountability, and effective communication within the whole university
- Partner with community sector organisations to further socially desirable goals
- Provide opportunities to staff and students to develop social and citizenship values and practice

[Strategic Direction 5: National, Regional and International Collaborations]

Goal No 1: Reinforce Networking Role

Rationale:
Networking is a vital mode of knowledge exchange: a powerful vehicle for productive engagement with the business community, and private and public sector organisations. A diverse range of approaches and structures will be required to build such connections. In this world of borderless education and changing educational environment, a variety of strategic partnerships should be developed for greater global involvement and visibility.

Strategies
- Strengthen existing partnerships at local, regional and international levels.
- Develop new strategic partnerships
- Exploit our assets, geographical, infrastructural and linguistic, to act as focal link between Africa and Asia
- Set up a ‘staff alumni’ and redynamise student alumni
- Database of UoM graduates on website
- Enhance student and staff exchange programmes

[Strategic Direction 6: Community Outreach]

Goal No1: Help the Community to Develop, Monitor and Enhance its Vitality

Rationale:
The UoM, particularly in its role as a national university thrives on the commitment to enrich the lives and experiences of our community and seek to expand access, interaction and foster dialogue, mutual care and concern. Our institution and employees will strive to support the health, safety, and social needs of our society by applying our best resources to achieve these objectives in becoming responsible community stewards.

Strategies
- Promote greater participation of University Court in activities.
· Promote greater public awareness of current community problems and issues
· Extend the resources and expertise of the UoM to directly address the community
· Stimulate public involvement by increasing access of community stakeholders to conferences, open days, and seminars

Goal No2: Promote Civic Engagement

Rationale:
There is an impending need to motivate our staff and students for active citizenship in our diverse multicultural society. The University of Mauritius will strive to promote intellectual and experiential participation in civic engagement for its staff and students. It will offer a range of project initiatives, working collaboratively with numerous civic leaders and organisations to engage in dialogue relevant to the specific context and concerns of our community.

Strategies
· Provide opportunities for our staff and students to participate in social activities
· Collaborate with NGOs and other institutions
· Give sustained voice (speeches, publications, editorials, etc.) to the importance of civic engagement
· Provide relevant training and professional development activities focused on civic engagement and public leadership skills
ANNEX IV: Collaboration with other Institutions

LIST OF MEMORANDUM OF UNDERSTANDING SIGNED WITH FOREIGN UNIVERSITIES/EXTERNAL INSTITUTIONS

CENTRAL ADMINISTRATION

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memorandum of Cooperation between the University of Pretoria and the University of Mauritius</td>
<td>30 May 2003</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td>Accord de Coopération entre l’Université de Maurice et l’Université de la Réunion (dans le domaine juridique)</td>
<td>07 August 2003</td>
<td>5 years (Renewable)</td>
<td>Dr R Gunputh (UOM)</td>
</tr>
<tr>
<td>MOU for the Small Island States Universities Consortium for Capacity Development to implement the Barbados Programme of Action</td>
<td>14 January 2005</td>
<td>3 years</td>
<td>-</td>
</tr>
<tr>
<td>MOU- Southern Afican Regional Universities Association</td>
<td>20 February 2005</td>
<td>Not mentioned</td>
<td>-</td>
</tr>
<tr>
<td>Accord de Cooperation entre L’Université de la Réunion et L’UoM</td>
<td>22 February 2005</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>Convention entre L’UoM et l’Agence Universitaire de la Francophonie (AUF)</td>
<td>16 March 2005</td>
<td>Up to 31 December 2006</td>
<td>-</td>
</tr>
<tr>
<td>UoM and SSR Medical College</td>
<td>22 June 2005</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>Agreement between Charles Sturt University and University of Mauritius for delivery of the joint Award Bachelor of Arts Library and Information Science 2005 Intake.</td>
<td>08 August 2005</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td>Singapore Management University and UoM</td>
<td>12 August 2005</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>Memorandum of Understanding between Shell LiveWIRE (Mauritius) - National Computer Board and the University of Mauritius.</td>
<td>Not available</td>
<td>5 years (Renewable)</td>
<td>-</td>
</tr>
<tr>
<td>The Mauritius Meteorological Services and UoM</td>
<td>13 February 2006</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>TITLE</td>
<td>DATE SIGNED</td>
<td>DURATION</td>
<td>LIAISON</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Enterprise Mauritius and UoM</td>
<td>13 March 2006</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td>Middlesex University and UoM</td>
<td>13 March 2006</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>The University of Lancaster and UoM</td>
<td>23 March 2006</td>
<td>3 years</td>
<td>-</td>
</tr>
<tr>
<td>Agreement between UoM and School of Communication and Information Nanyang Technological University, Singapore</td>
<td>31 March 2006</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>Indian Institute of Technology, Kanpur and UoM</td>
<td>31 March 2006</td>
<td>Up to end of 2008 (Renewable)</td>
<td>-</td>
</tr>
<tr>
<td>Accord de Coopération entre l’Université de Maurice et l’Université de Monpellier I, Monpellier, France.</td>
<td>17 April 2006</td>
<td>Not specified</td>
<td>Dr N Kotea</td>
</tr>
<tr>
<td>Memorandum of Understanding between the University of Mauritius and l’Université des Antilles et de la Guyane</td>
<td>31 May 2006</td>
<td>5 years</td>
<td>-</td>
</tr>
<tr>
<td>Affiliation Agreement UoM and MCA</td>
<td>5 June 2006</td>
<td>5 years</td>
<td>-</td>
</tr>
</tbody>
</table>

FACULTY OF ENGINEERING

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>UoM, represented by the Vice-Chancellor & Mauritius Sugar Authority, represented by the Executive Director</td>
<td>22 June 1998</td>
<td>Effective for an initial period of two years – Renewable On going</td>
<td>Assoc. Prof C Bhurtun Assoc Prof M E Allybokus (UoM)</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & CDAC/SAC, represented by Shri R K Arora (representative of CDAC, Mr B Sharma), University of Pune India</td>
<td>11 April 2002</td>
<td>On going</td>
<td>Dean FOE</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Manchester College of Arts, represented by the Head, Business & Management Department</td>
<td>15 May 2002</td>
<td>On going</td>
<td>-</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Manchester College of Arts, represented by the Head, Business & Management Department</td>
<td>15 May 2002</td>
<td>On going</td>
<td>-</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Manchester College of Arts, represented by the Head, Business & Management Department</td>
<td>14 January 2002</td>
<td>On going</td>
<td>-</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Manchester College of Arts, represented by the Head, Business & Management Department</td>
<td>20 May 2002</td>
<td>Effective for 1 year</td>
<td>Assoc. Prof</td>
</tr>
<tr>
<td>TITLE</td>
<td>DATE SIGNED</td>
<td>DURATION</td>
<td>LIAISON</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Chancellor & Martin Luther University of Halle-Wittenberg, Germany, represented by Prof Reinhard Neubert</td>
<td>22 July 2002</td>
<td>year – (extended for one additional year at a time)</td>
<td>M Nowbuth (UoM)</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Kenya Institute of Organic Farming, represented by the Director</td>
<td>20 September 2002</td>
<td>1st October 2002 to September 2003</td>
<td>Dr R Mohee (UoM)</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & University of Pretoria represented by the Vice-Chancellor & Principal</td>
<td>16 July 2003</td>
<td>Not specified</td>
<td>-</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Royal Holloway, University of London, Represented by the Principal</td>
<td>24 July 2003</td>
<td>On going</td>
<td>-</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Ecole Nationale des Arts et d’Industries Textiles, France (ENSAIT), represented by Prof J M Castelain</td>
<td>2 October 2003</td>
<td>On going</td>
<td>Assoc Prof S Rosunee (UoM)</td>
</tr>
<tr>
<td>UoM, represented by the Vice-Chancellor & Université de Technologie de Compiègne (UTC), represented by Prof F Peccoud</td>
<td>7 November 2003</td>
<td>On going</td>
<td>Dean FOE</td>
</tr>
</tbody>
</table>

FACULTY OF SCIENCE

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accord de coopération entre d’une part le Ministère de la Santé et la Qualité de la Vie de la République de Maurice et l’Université de Maurice et d’autre part l’Université Victor</td>
<td>20 July 2004</td>
<td>5 years (Renewable)</td>
<td>Dr M Manraj (UOM) Dr D Polycarpe (Université Bordeaux 2)</td>
</tr>
<tr>
<td>TITLE</td>
<td>DATE SIGNED</td>
<td>DURATION</td>
<td>LIAISON</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>Segalen Bordeaux 2 et Le Centre Hospitalier Universitaire de Bordeaux</td>
<td></td>
<td></td>
<td>Assoc Prof A Kalangos(HUG) Assoc Prof D Jhurry (UOM) Dr T K Guness (CCM)</td>
</tr>
<tr>
<td>Memorandum of Understanding between Hôpitaux Universitaires de Genève (HUG), The University of Mauritius (UoM) and the Cardiac Centre, Mauritius (CCM)</td>
<td>07 June 2006</td>
<td>3 years</td>
<td>Dr L Poonyth (UOM)</td>
</tr>
<tr>
<td>Memorandum of Agreement between the University of Mauritius and the University of Cape Town</td>
<td>30 October 2003</td>
<td>5 years</td>
<td>Assoc Prof T Bahorun (UOM) Mr G de Fortenay (La Compagnie Agricole de Labourdonnais)</td>
</tr>
<tr>
<td>Memorandum of Understanding between University of Mauritius, and the International Centre of Insect Physiology and Ecology (ICIPE)</td>
<td>April 2006</td>
<td>1 year</td>
<td>-</td>
</tr>
<tr>
<td>Memorandum of Understanding between the University of Mauritius and La Compagnie Agricole de labourdonnais</td>
<td>Already signed by the VC (UoM). Not yet signed by the other party</td>
<td>3 years</td>
<td>-</td>
</tr>
<tr>
<td>Memorandum of Understanding between University of Mauritius and University of Technology Mauritius</td>
<td>April 2006 (Effective as from the date of the 1st intake of students – MSc /Pg D Programme in Sustainable Environmental Development)</td>
<td>Valid for the duration of studies of 1st cohort and any subsequent cohorts</td>
<td>Programme Director to be appointed by UOM.</td>
</tr>
<tr>
<td>Memorandum of Agreement between University of Mauritius and University of Leeds</td>
<td>Already signed by VC (UoM). Not yet signed by the other party</td>
<td>5 years</td>
<td>Dr S Goorah (UoM) Prof A Boylston (University of</td>
</tr>
</tbody>
</table>
FACULTY OF SOCIAL STUDIES AND HUMANITIES

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoU with Telemark University, Norway.</td>
<td>October 2004</td>
<td>2 years</td>
<td>Dean FSSH</td>
</tr>
<tr>
<td>MoU with Stavanger University, Norway</td>
<td>In process</td>
<td>-</td>
<td>Dean FSSH</td>
</tr>
<tr>
<td>MoU with University of Rondonia, Brazil.</td>
<td>31 May 2006</td>
<td>5 years</td>
<td>Dr D Police</td>
</tr>
</tbody>
</table>

CENTRE FOR PROFESSIONAL DEVELOPMENT AND LIFELONG LEARNING

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooperation Agreement between University of Mauritius and Technikon, Pretoria</td>
<td>29 March 2002</td>
<td>Not specified (can be terminated within one year)</td>
<td></td>
</tr>
<tr>
<td>Accord entre l’Université de Droit, D’Economie et des Sciences D’Aix-Marseille et L’Université de Maurice</td>
<td>29 March 2004</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>Memorandum of Understanding between University of Mauritius and Commission for Education and Training, Rodrigues</td>
<td>19 March 2005</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>Commission for Education and Training, Rodrigues</td>
<td>14 March 2006</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>Memorandum of Understanding between Staffordshire University and University of Mauritius</td>
<td>Signature will be held in September 2006</td>
<td>3 years</td>
<td>Mr A Parahoo</td>
</tr>
</tbody>
</table>

CENTRE FOR INFORMATION TECHNOLOGY & SYSTEMS
<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agreement between UoM and Port Elizabeth Technikon Regional Academy i.c.w Cisco Networking Academy Program</td>
<td>05 June 2002</td>
<td>Active</td>
<td>Mr R Halkhoree Mr K Ramen</td>
</tr>
<tr>
<td>Agreement between UoM and Port Elizabeth Technikon Regional Academy i.c.w Cisco Academy Program</td>
<td>30 July 2003</td>
<td>Active</td>
<td>Mr S Soocheta Mr R Halkhoree</td>
</tr>
<tr>
<td>Convention Cadre –Centre Linux et Logiciels Libres pour le Développement with L’Agence Universitaire de la Francophonie (AUF)</td>
<td>August 2004</td>
<td>Active</td>
<td>Mr R Halkhoree</td>
</tr>
<tr>
<td>Agreement between UoM and Seychelles Polytechnic Local Academy i.c.w Cisco Networking Programme</td>
<td>10 February 2005</td>
<td>Active</td>
<td>Mr R Halkhoree Mr K Ramen</td>
</tr>
<tr>
<td>Agreement between UoM and Nelson Mandela Metropolitan University i.c.w Cisco Networking Academy Programme</td>
<td>10 February 2005</td>
<td>Active</td>
<td>Mr R Halkhoree Mr K Ramen</td>
</tr>
<tr>
<td>Agreement between UoM and Cisco System International</td>
<td>31 March 2005</td>
<td>Active</td>
<td>Mr R Halkhoree Mr K Ramen</td>
</tr>
<tr>
<td>Agreement between UoM and Industrial and Vocational Training Board</td>
<td>30 November 2005</td>
<td>Active</td>
<td>Mr R Halkhoree Mr K Ramen</td>
</tr>
</tbody>
</table>

VIRTUAL CENTRE FOR INNOVATIVE LEARNING TECHNOLOGIES

<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoU between University of Mauritius and L’Ecole Normale Supérieure de Paris (La Main à la Pâte)</td>
<td>19 Septembre 2003</td>
<td>2003-2005 (Renewable)</td>
<td>Mrs B Salviat</td>
</tr>
<tr>
<td>MoU between University of Mauritius and Institut Régional du Travail Social (IRTS) de la Réunion</td>
<td>16 March 2006</td>
<td>2006 5 years</td>
<td>Dr Sidambarampouillé</td>
</tr>
</tbody>
</table>

Updated List (March 2007)
<table>
<thead>
<tr>
<th>TITLE</th>
<th>DATE SIGNED</th>
<th>DURATION</th>
<th>LIAISON</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Mauritius International Business School:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a) University of Mauritius and the University of Lancaster, U.K.</td>
<td>23 May 2006 - (VC of UoM)</td>
<td>3 years</td>
<td>Prof I Fagoonee</td>
</tr>
<tr>
<td>(b) Academic Co-operation Agreement between University of Mauritius and the Nanyang Technological University, Singapore</td>
<td>2 May 2006 - (VC of Lancaster)</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>MoU between Mauritius Meteorological Services and University of Mauritius</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>'Accord de Coopération' between L'Université d'Antananarivo, Madagascar and University of Mauritius</td>
<td>30 June 2006</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td>MoU between Middlesex University and University of Mauritius</td>
<td>13 March 2006 - (VC of UoM) 11 April 2006 - (VC of Middlesex)</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>MoU between University of Mauritius and Institut Régional du Travail (IRTS) de La Réunion</td>
<td>16 March 2006 - (VC of UoM) 25 April 2006 - (Présidente de IRTS)</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>MoU between University of Mauritius and University of Technology, Mauritius</td>
<td>3 March 2006 - (VC of UoM) 7 April 2006 - (Directeur Générale UTM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoU between L'Université des Antilles et de Guyane (L'UAG) and University of Mauritius</td>
<td>31 May 2006 - (VC of UoM) 14 June 2006 - (Président de L'Université des Antilles)</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>Affiliation Agreement between University of Mauritius and Mauritius College of the Air</td>
<td>5 June 2006 - (VC of UoM) 7 June 2006 - (Director of MCA)</td>
<td>5 years</td>
<td></td>
</tr>
<tr>
<td>MoU between University of Mauritius and South East Asian Ministers of Education Organisation (SEAMEO), Regional Language</td>
<td>20 November 2006 - (VC of UoM) 1 November 2006 - (Director of SEAMEO)</td>
<td>3 years</td>
<td></td>
</tr>
<tr>
<td>TITLE</td>
<td>DATE SIGNED</td>
<td>DURATION</td>
<td>LIAISON</td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Centre, Singapore</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoU between University of Mauritius and the Mauritius Research Council on CASR</td>
<td>18 July 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renewal of MoU between the International Committee of the Red Cross (ICRC) Regional Delegation for Southern Africa and the Indian Ocean and the Faculty of Law and Management.</td>
<td>18 January 2002</td>
<td>3 years w.e.f 1 August 06</td>
<td></td>
</tr>
<tr>
<td>'Projet de Convention AUF/UoM pour l'Hébergement d'un Campus Numérique Francophone'</td>
<td>30 November 2006</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>